Your search

In authors or contributors
  • <jats:p>To comply with the United Nations Sustainable Development Goals (UN SDGs), in particular with SDG 3, SDG 11, and SDG 13, a reliable air pollution prediction model must be developed to construct a sustainable, safe, and resilient city and mitigate climate change for a double win. Machine learning (ML) and deep learning (DL) models have been applied to datasets in Macau to predict the daily levels of roadside air pollution in the Macau peninsula, situated near the historical sites of Macau. Macau welcomed over 28 million tourists in 2023 as a popular tourism destination. Still, an accurate air quality forecast has not been in place for many years due to the lack of a reliable emission inventory. This work will develop a dependable air pollution prediction model for Macau, which is also the novelty of this study. The methods, including random forest (RF), support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU), were applied and successful in the prediction of daily air pollution levels in Macau. The prediction model was trained using the air quality and meteorological data from 2013 to 2019 and validated using the data from 2020 to 2021. The model performance was evaluated based on the root mean square error (RMSE), mean absolute error (MAE), Pearson’s correlation coefficient (PCC), and Kendall’s tau coefficient (KTC). The RF model best predicted PM10, PM2.5, NO2, and CO concentrations with the highest PCC and KTC in a daily air pollution prediction. In addition, the SVR model had the best stability and repeatability compared to other models, with the lowest SD in RMSE, MAE, PCC, and KTC after five model runs. Therefore, the results of this study show that the RF model is more efficient and performs better than other models in the prediction of air pollution for the dataset of Macau.</jats:p>

  • Antimicrobial resistance has become a critical global health problem due to the abuse of conventional antibiotics and the rise of multi-drug-resistant microbes. Antimicrobial peptides (AMPs) are a group of natural peptides that show promise as next-generation antibiotics due to their low toxicity to the host, broad spectrum of biological activity, including antibacterial, antifungal, antiviral, and anti-parasitic activities, and great therapeutic potential, such as anticancer, anti-inflammatory, etc. Most importantly, AMPs kill bacteria by damaging cell membranes using multiple mechanisms of action rather than targeting a single molecule or pathway, making it difficult for bacterial drug resistance to develop. However, experimental approaches used to discover and design new AMPs are very expensive and time-consuming. In recent years, there has been considerable interest in using in silico methods, including traditional machine learning (ML) and deep learning (DL) approaches, to drug discovery. While there are a few papers summarizing computational AMP prediction methods, none of them focused on DL methods. In this review, we aim to survey the latest AMP prediction methods achieved by DL approaches. First, the biology background of AMP is introduced, then various feature encoding methods used to represent the features of peptide sequences are presented. We explain the most popular DL techniques and highlight the recent works based on them to classify AMPs and design novel peptide sequences. Finally, we discuss the limitations and challenges of AMP prediction.

  • <jats:p>To better inform the public about ambient air quality and associated health risks and prevent cardiovascular and chronic respiratory diseases in Macau, the local government authorities apply the Air Quality Index (AQI) for air quality management within its jurisdiction. The application of AQI requires first determining the sub-indices for several pollutants, including respirable suspended particulates (PM10), fine suspended particulates (PM2.5), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and carbon monoxide (CO). Accurate prediction of AQI is crucial in providing early warnings to the public before pollution episodes occur. To improve AQI prediction accuracy, deep learning methods such as artificial neural networks (ANNs) and long short-term memory (LSTM) models were applied to forecast the six pollutants commonly found in the AQI. The data for this study was accessed from the Macau High-Density Residential Air Quality Monitoring Station (AQMS), which is located in an area with high traffic and high population density near a 24 h land border-crossing facility connecting Zhuhai and Macau. The novelty of this work lies in its potential to enhance operational AQI forecasting for Macau. The ANN and LSTM models were run five times, with average pollutant forecasts obtained for each model. Results demonstrated that both models accurately predicted pollutant concentrations of the upcoming 24 h, with PM10 and CO showing the highest predictive accuracy, reflected in high Pearson Correlation Coefficient (PCC) between 0.84 and 0.87 and Kendall’s Tau Coefficient (KTC) between 0.66 and 0.70 values and low Mean Bias (MB) between 0.06 and 0.10, Mean Fractional Bias (MFB) between 0.09 and 0.11, Root Mean Square Error (RMSE) between 0.14 and 0.21, and Mean Absolute Error (MAE) between 0.11 and 0.17. Overall, the LSTM model consistently delivered the highest PCC (0.87) and KTC (0.70) values and the lowest MB (0.06), MFB (0.09), RMSE (0.14), and MAE (0.11) across all six pollutants, with the lowest SD (0.01), indicating greater precision and reliability. As a result, the study concludes that the LSTM model outperforms the ANN model in forecasting air pollutants in Macau, offering a more accurate and consistent prediction tool for local air quality management.</jats:p>

Last update from database: 12/17/25, 7:01 PM (UTC)

Explore