Your search
Results 24 resources
-
We are delighted to present this special issue editorial for Neural Computing and Applications special issue on LatinX in AI research. This special issue brings together a collection of articles that explore machine learning and artificial intelligence research from various perspectives, aiming to provide a comprehensive and in-depth understanding of what LatinX researchers are working on in the field. In this editorial, we will introduce the overarching theme of the special issue, highlight the significance of the selected papers, and offer insights into the contributions made by the authors. The LatinX in AI organization was launched in 2018, with leaders from organizations in Artificial Intelligence, Education, Research, Engineering, and Social Impact with a purpose to together create a group that would be focused on “Creating Opportunity for LatinX in AI.” The main goal is to increase the representation of LatinX professionals in the AI industry. LatinX in AI Org and programs are volunteer-run and fiscally sponsored by the Accel AI Institute, 501(c)3 Non-Profit.
-
It is known that the probability is not a conserved quantity in the stock market, given the fact that it corresponds to an open system. In this paper we analyze the flow of probability in this system by expressing the ideal Black-Scholes equation in the Hamiltonian form. We then analyze how the non-conservation of probability affects the stability of the prices of the Stocks. Finally, we find the conditions under which the probability might be conserved in the market, challenging in this way the non-Hermitian nature of the Black-Scholes Hamiltonian.
-
In this chapter, a mathematical model explaining generically the propagation of a pandemic is proposed, helping in this way to identify the fundamental parameters related to the outbreak in general. Three free parameters for the pandemic are identified, which can be finally reduced to only two independent parameters. The model is inspired in the concept of spontaneous symmetry breaking, used normally in quantum field theory, and it provides the possibility of analyzing the complex data of the pandemic in a compact way. Data from 12 different countries are considered and the results presented. The application of nonlinear quantum physics equations to model epidemiologic time series is an innovative and promising approach.
-
At the beginning of 2020, the World Health Organization (WHO) started a coordinated global effort to counterattack the potential exponential spread of the SARS-Cov2 virus, responsible for the coronavirus disease, officially named COVID-19. This comprehensive initiative included a research roadmap published in March 2020, including nine dimensions, from epidemiological research to diagnostic tools and vaccine development. With an unprecedented case, the areas of study related to the pandemic received funds and strong attention from different research communities (universities, government, industry, etc.), resulting in an exponential increase in the number of publications and results achieved in such a small window of time. Outstanding research cooperation projects were implemented during the outbreak, and innovative technologies were developed and improved significantly. Clinical and laboratory processes were improved, while managerial personnel were supported by a countless number of models and computational tools for the decision-making process. This chapter aims to introduce an overview of this favorable scenario and highlight a necessary discussion about ethical issues in research related to the COVID-19 and the challenge of low-quality research, focusing only on the publication of techniques and approaches with limited scientific evidence or even practical application. A legacy of lessons learned from this unique period of human history should influence and guide the scientific and industrial communities for the future.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Business and Law
(22)
- Alexandre Lobo (4)
- Ivan Arraut (21)
- Sergio Gomes (1)
Resource type
- Book Section (2)
- Conference Paper (1)
- Journal Article (15)
- Preprint (3)
- Thesis (2)
- Web Page (1)