Your search
Results 4 resources
-
The use of computational tools for medical image processing are promising tools to effectively detect COVID-19 as an alternative to expensive and time-consuming RT-PCR tests. For this specific task, CXR (Chest X-Ray) and CCT (Chest CT Scans) are the most common examinations to support diagnosis through radiology analysis. With these images, it is possible to support diagnosis and determine the disease’s severity stage. Computerized COVID-19 quantification and evaluation require an efficient segmentation process. Essential tasks for automatic segmentation tools are precisely identifying the lungs, lobes, bronchopulmonary segments, and infected regions or lesions. Segmented areas can provide handcrafted or self-learned diagnostic criteria for various applications. This Chapter presents different techniques applied for Chest CT Scans segmentation, considering the state of the art of UNet networks to segment COVID-19 CT scans and a segmentation experiment for network evaluation. Along 200 epochs, a dice coefficient of 0.83 was obtained.
-
COVID-19 is a respiratory disorder caused by CoronaVirus and SARS (SARS-CoV2). WHO declared COVID-19 a global pandemic in March 2020 and several nations’ healthcare systems were on the verge of collapsing. With that, became crucial to screen COVID-19-positive patients to maximize limited resources. NAATs and antigen tests are utilized to diagnose COVID-19 infections. NAATs reliably detect SARS-CoV-2 and seldom produce false-negative results. Because of its specificity and sensitivity, RT-PCR can be considered the gold standard for COVID-19 diagnosis. This test’s complex gear is pricey and time-consuming, using skilled specialists to collect throat or nasal mucus samples. These tests require laboratory facilities and a machine for detection and analysis. Deep learning networks have been used for feature extraction and classification of Chest CT-Scan images and as an innovative detection approach in clinical practice. Because of COVID-19 CT scans’ medical characteristics, the lesions are widely spread and display a range of local aspects. Using deep learning to diagnose directly is difficult. In COVID-19, a Transformer and Convolutional Neural Network module are presented to extract local and global information from CT images. This chapter explains transfer learning, considering VGG-16 network, in CT examinations and compares convolutional networks with Vision Transformers (ViT). Vit usage increased VGG-16 network F1-score to 0.94.
-
This chapter describes an AUTO-ML strategy to detect COVID on chest X-rays utilizing Transfer Learning feature extraction and the AutoML TPOT framework in order to identify lung illnesses (such as COVID or pneumonia). MobileNet is a lightweight network that uses depthwise separable convolution to deepen the network while decreasing parameters and computation. AutoML is a revolutionary concept of automated machine learning (AML) that automates the process of building an ML pipeline inside a constrained computing framework. The term “AutoML” can mean a number of different things depending on context. AutoML has risen to prominence in both the business world and the academic community thanks to the ever-increasing capabilities of modern computers. Python Optimised ML Pipeline (TPOT) is a Python-based ML tool that optimizes pipeline efficiency via genetic programming. We use TPOT builds models for extracted MobileNet network features from COVID-19 image data. The f1-score of 0.79 classifies Normal, Viral Pneumonia, and Lung Opacity.
-
The gold standard to detect SARS-CoV-2 infection consider testing methods based on Polymerase Chain Reaction (PCR). Still, the time necessary to confirm patient infection can be lengthy, and the process is expensive. On the other hand, X-Ray and CT scans play a vital role in the auxiliary diagnosis process. Hence, a trusted automated technique for identifying and quantifying the infected lung regions would be advantageous. Chest X-rays are two-dimensional images of the patient’s chest and provide lung morphological information and other characteristics, like ground-glass opacities (GGO), horizontal linear opacities, or consolidations, which are characteristics of pneumonia caused by COVID-19. But before the computerized diagnostic support system can classify a medical image, a segmentation task should usually be performed to identify relevant areas to be analyzed and reduce the risk of noise and misinterpretation caused by other structures eventually present in the images. This chapter presents an AI-based system for lung segmentation in X-ray images using a U-net CNN model. The system’s performance was evaluated using metrics such as cross-entropy, dice coefficient, and Mean IoU on unseen data. Our study divided the data into training and evaluation sets using an 80/20 train-test split method. The training set was used to train the model, and the evaluation test set was used to evaluate the performance of the trained model. The results of the evaluation showed that the model achieved a Dice Similarity Coefficient (DSC) of 95%, Cross entropy of 97%, and Mean IoU of 86%.
Explore
Academic Units
Resource type
- Book Section (4)
United Nations SDGs
Cooperation
Publication year
-
Between 2000 and 2025
(4)
-
Between 2020 and 2025
(4)
- 2023 (4)
-
Between 2020 and 2025
(4)