Your search
Results 26 resources
-
Macula fovea detection is a crucial prerequisite towards screening and diagnosing macular diseases. Without early detection and proper treatment, any abnormality involving the macula may lead to blindness. However, with the ophthalmologist shortage and time-consuming artificial evaluation, neither accuracy nor effectiveness of the diagnose process could be guaranteed. In this project, we proposed a deep learning approach on ultra-widefield fundus (UWF) images for macula fovea detection. This study collected 2300 ultra-widefield fundus images from Shenzhen Aier Eye Hospital in China. Methods based on U-shape network (Unet) and Fully Convolutional Networks (FCN) are implemented on 1800 (before amplifying process) training fundus images, 400 (before amplifying process) validation images and 100 test images. Three professional ophthalmologists were invited to mark the fovea. A method from the anatomy perspective is investigated. This approach is derived from the spatial relationship between macula fovea and optic disc center in UWF. A set of parameters of this method is set based on the experience of ophthalmologists and verified to be effective. Results are measured by calculating the Euclidean distance between proposed approaches and the accurate grounded standard, which is detected by Ultra-widefield swept-source optical coherence tomograph (UWF-OCT) approach. Through a comparation of proposed methods, we conclude that, deep learning approach of Unet outperformed other methods on macula fovea detection tasks, by which outcomes obtained are comparable to grounded standard method.
-
There are a large number of symptom consultation texts in medical and healthcare Internet communities, and Chinese health segmentation is more complex, which leads to the low accuracy of the existing algorithms for medical text classification. The deep learning model has advantages in extracting abstract features of text effectively. However, for a large number of samples of complex text data, especially for words with ambiguous meanings in the field of Chinese medical diagnosis, the word-level neural network model is insufficient. Therefore, in order to solve the triage and precise treatment of patients, we present an improved Double Channel (DC) mechanism as a significant enhancement to Long Short-Term Memory (LSTM). In this DC mechanism, two channels are used to receive word-level and char-level embedding, respectively, at the same time. Hybrid attention is proposed to combine the current time output with the current time unit state and then using attention to calculate the weight. By calculating the probability distribution of each timestep input data weight, the weight score is obtained, and then weighted summation is performed. At last, the data input by each timestep is subjected to trade-off learning to improve the generalization ability of the model learning. Moreover, we conduct an extensive performance evaluation on two different datasets: cMedQA and Sentiment140. The experimental results show that the DC-LSTM model proposed in this paper has significantly superior accuracy and ROC compared with the basic CNN-LSTM model.
Explore
Academic Units
Resource type
- Book Section (4)
- Conference Paper (6)
- Journal Article (15)
- Report (1)
Cooperation
- Macau (1)