Your search
Results 29 resources
-
Classification of electroencephalogram (EEG) is a key approach to measure the rhythmic oscillations of neural activity, which is one of the core technologies of brain-computer interface systems (BCIs). However, extraction of the features from non-linear and non-stationary EEG signals is still a challenging task in current algorithms. With the development of artificial intelligence, various advanced algorithms have been proposed for signal classification in recent years. Among them, deep neural networks (DNNs) have become the most attractive type of method due to their end-to-end structure and powerful ability of automatic feature extraction. However, it is difficult to collect large-scale datasets in practical applications of BCIs, which may lead to overfitting or weak generalizability of the classifier. To address these issues, a promising technique has been proposed to improve the performance of the decoding model based on data augmentation (DA). In this article, we investigate recent studies and development of various DA strategies for EEG classification based on DNNs. The review consists of three parts: what kind of paradigms of EEG-based on BCIs are used, what types of DA methods are adopted to improve the DNN models, and what kind of accuracy can be obtained. Our survey summarizes the current practices and performance outcomes that aim to promote or guide the deployment of DA to EEG classification in future research and development.
-
Sentiment analysis technologies have a strong impact on financial markets. In recent years there has been increasing interest in analyzing the sentiment of investors. The objective of this paper is to evaluate the current state of the art and synthesize the published literature related to the financial sentiment analysis, especially in investor sentiment for prediction of stock price. Starting from this overview the paper provides answers to the questions about how and to what extent research on investor sentiment analysis and stock price trend forecasting in the financial markets has developed and which tools are used for these purposes remains largely unexplored. This paper represents the comprehensive literature-based study on the fields of the investors sentiment analytics and machine learning applied to analyzing the sentiment of investors and its influencing stock market and predicting stock price.
-
To solve the problem of one-sided pursuit of the shortest distance but ignoring the tourist experience in the process of tourism route planning, an improved ant colony optimization algorithm is proposed for tourism route planning. Contextual information of scenic spots significantly effect people’s choice of tourism destination, so the pheromone update strategy is combined with the contextual information such as weather and comfort degree of the scenic spot in the process of searching the global optimal route, so that the pheromone update tends to the path suitable for tourists. At the same time, in order to avoid falling into local optimization, the sub-path support degree is introduced. The experimental results show that the optimized tourism route has greatly improved the tourist experience, the route distance is shortened by 20.5% and the convergence speed is increased by 21.2% compared with the basic algorithm, which proves that the improved algorithm is notably effective.
-
Macula fovea detection is a crucial prerequisite towards screening and diagnosing macular diseases. Without early detection and proper treatment, any abnormality involving the macula may lead to blindness. However, with the ophthalmologist shortage and time-consuming artificial evaluation, neither accuracy nor effectiveness of the diagnose process could be guaranteed. In this project, we proposed a deep learning approach on ultra-widefield fundus (UWF) images for macula fovea detection. This study collected 2300 ultra-widefield fundus images from Shenzhen Aier Eye Hospital in China. Methods based on U-shape network (Unet) and Fully Convolutional Networks (FCN) are implemented on 1800 (before amplifying process) training fundus images, 400 (before amplifying process) validation images and 100 test images. Three professional ophthalmologists were invited to mark the fovea. A method from the anatomy perspective is investigated. This approach is derived from the spatial relationship between macula fovea and optic disc center in UWF. A set of parameters of this method is set based on the experience of ophthalmologists and verified to be effective. Results are measured by calculating the Euclidean distance between proposed approaches and the accurate grounded standard, which is detected by Ultra-widefield swept-source optical coherence tomograph (UWF-OCT) approach. Through a comparation of proposed methods, we conclude that, deep learning approach of Unet outperformed other methods on macula fovea detection tasks, by which outcomes obtained are comparable to grounded standard method.
-
There are a large number of symptom consultation texts in medical and healthcare Internet communities, and Chinese health segmentation is more complex, which leads to the low accuracy of the existing algorithms for medical text classification. The deep learning model has advantages in extracting abstract features of text effectively. However, for a large number of samples of complex text data, especially for words with ambiguous meanings in the field of Chinese medical diagnosis, the word-level neural network model is insufficient. Therefore, in order to solve the triage and precise treatment of patients, we present an improved Double Channel (DC) mechanism as a significant enhancement to Long Short-Term Memory (LSTM). In this DC mechanism, two channels are used to receive word-level and char-level embedding, respectively, at the same time. Hybrid attention is proposed to combine the current time output with the current time unit state and then using attention to calculate the weight. By calculating the probability distribution of each timestep input data weight, the weight score is obtained, and then weighted summation is performed. At last, the data input by each timestep is subjected to trade-off learning to improve the generalization ability of the model learning. Moreover, we conduct an extensive performance evaluation on two different datasets: cMedQA and Sentiment140. The experimental results show that the DC-LSTM model proposed in this paper has significantly superior accuracy and ROC compared with the basic CNN-LSTM model.
Explore
Academic Units
Resource type
- Book (1)
- Book Section (6)
- Conference Paper (7)
- Journal Article (14)
- Report (1)
Cooperation
-
China
(2)
- Henan University (2)
- Macau (1)
Publication year
- Between 2000 and 2025 (29)