Your search
Results 29 resources
-
结合实用案例讲解Java语法、面向对象程序设计技术和核心API。 全书共10章,内容涵盖Java概述、Java语法基础、面向对象基础、面向对象高级技术、 Java API、异常处理机制、Java I/O流、多线程、Java GUI编程和Java网络编程等知识要点。案例丰富,以JDK 17和IntelliJ IDEA等流行的开发环境为依托,力求让读者通过案例 掌握Java编程技术。另一个特色是在阐释专业内容的同时自然融入思政元素, 具有鲜明的时代性和引领性。 可作为普通高等院校计算机、软件工程、人工智能等专业“面向对象程序设计”“Java程序设计”课程的教材,也适 合编程爱好者自学和培训使用。
-
Text classification is an important topic in natural language processing, with the development of social network, many question-and-answer pairs regarding health-care and medicine flood social platforms. It is of great social value to mine and classify medical text and provide targeted medical services for patients. The existing algorithms of text classification can deal with simple semantic text, especially in the field of Chinese medical text, the text structure is complex and includes a large number of medical nomenclature and professional terms, which are difficult for patients to understand. We propose a Chinese medical text classification model using a BERT-based Chinese text encoder by N-gram representations (ZEN) and capsule network, which represent feature uses the ZEN model and extract the features by capsule network, we also design a N-gram medical dictionary to enhance medical text representation and feature extraction. The experimental results show that the precision, recall and F1-score of our model are improved by 10.25%, 11.13% and 12.29%, respectively, compared with the baseline models in average, which proves that our model has better performance.
-
The number of tourist attractions reviews, travel notes and other texts has grown exponentially in the Internet age. Effectively mining users’ potential opinions and emotions on tourist attractions, and helping to provide users with better recommendation services, which is of great practical significance. This paper proposes a multi-channel neural network model called Pre-BiLSTM combined with a pre-training mechanism. The model uses a combination of coarse and fine- granularity strategies to extract the features of text information such as reviews and travel notes to improve the performance of text sentiment analysis. First, we construct three channels and use the improved BERT and skip-gram methods with negative sampling to vectorize the word-level and vocabulary-level text, respectively, so as to obtain more abundant textual information. Second, we use the pre-training mechanism of BERT to generate deep bidirectional language representation relationships. Third, the vectors of the three channels are input into the BiLSTM network in parallel to extract global and local features. Finally, the model fuses the text features of the three channels and classifies them using SoftMax classifier. Furthermore, numerical experiments are conducted to demonstrate that Pre-BiLSTM outperforms the baselines by 6.27%, 12.83% and 18.12% in average in terms of accuracy, precision and F1-score.
-
Dance education has undergone significant changes with the integration of information technology. Traditional dance pedagogy is now complemented by innovative digital software tools and applications. This work surveys the diverse applications of information technology in dance education at college or university level and the impact it has on teaching and learning processes. We discuss the integration of technology in various aspects of dance education, including skill development, choreography, performance analysis, VR/AR, online virtual learning, and collaborative learning. Additionally, the benefits and challenges associated with the use of information technology are also examined and the future research directions for research and practice in this field are proposed.
-
Recently, a lot of Chinese patients consult treatment plans through social networking platforms, but the Chinese medical text contains rich information, including a large number of medical nomenclatures and symptom descriptions. How to build an intelligence model to automatically classify the text information consulted by patients and recommend the correct department for patients is very important. In order to address the problem of insufficient feature extraction from Chinese medical text and low accuracy, this paper proposes a dual channel Chinese medical text classification model. The model extracts feature of Chinese medical text at different granularity, comprehensively and accurately obtains effective feature information, and finally recommends departments for patients according to text classification. One channel of the model focuses on medical nomenclatures, symptoms and other words related to hospital departments, gives different weights, calculates corresponding feature vectors with convolution kernels of different sizes, and then obtains local text representation. The other channel uses the BiGRU network and attention mechanism to obtain text representation, highlighting the important information of the whole sentence, that is, global text representation. Finally, the model uses full connection layer to combine the representation vectors of the two channels, and uses Softmax classifier for classification. The experimental results show that the accuracy, recall and F1-score of the model are improved by 10.65%, 8.94% and 11.62% respectively compared with the baseline models in average, which proves that our model has better performance and robustness.
-
Traditional text classification models have some drawbacks, such as the inability of the model to focus on important parts of the text contextual information in text processing. To solve this problem, we fuse the long and short-term memory network BiGRU with a convolutional neural network to receive text sequence input to reduce the dimensionality of the input sequence and to reduce the loss of text features based on the length and context dependency of the input text sequence. Considering the extraction of important features of the text, we choose the long and short-term memory network BiLSTM to capture the main features of the text and thus reduce the loss of features. Finally, we propose a BiGRU-CNN-BiLSTM model (DCRC model) based on CNN, GRU and LSTM, which is trained and validated on the THUCNews and Toutiao News datasets. The model outperformed the traditional model in terms of accuracy, recall and F1 score after experimental comparison.
-
In view of the complex marine environment of navigation, especially in the case of multiple static and dynamic obstacles, the traditional obstacle avoidance algorithms applied to unmanned surface vehicles (USV) are prone to fall into the trap of local optimization. Therefore, this paper proposes an improved artificial potential field (APF) algorithm, which uses 5G communication technology to communicate between the USV and the control center. The algorithm introduces the USV discrimination mechanism to avoid the USV falling into local optimization when the USV encounter different obstacles in different scenarios. Considering the various scenarios between the USV and other dynamic obstacles such as vessels in the process of performing tasks, the algorithm introduces the concept of dynamic artificial potential field. For the multiple obstacles encountered in the process of USV sailing, based on the International Regulations for Preventing Collisions at Sea (COLREGS), the USV determines whether the next step will fall into local optimization through the discrimination mechanism. The local potential field of the USV will dynamically adjust, and the reverse virtual gravitational potential field will be added to prevent it from falling into the local optimization and avoid collisions. The objective function and cost function are designed at the same time, so that the USV can smoothly switch between the global path and the local obstacle avoidance. The simulation results show that the improved APF algorithm proposed in this paper can successfully avoid various obstacles in the complex marine environment, and take navigation time and economic cost into account.
-
Medical classification is affected by many factors, and the traditional medical classification is usually restricted by factors such as too long text, numerous categories and so on. In order to solve these problems, this paper uses word vector and word vector to mine the text deeply, considering the problem of scattered key features of medical text, introducing long-term and short-term memory network to effectively retain the features of historical information in long text sequence, and using the structure of CNN to extract local features of text, through attention mechanism to obtain key features, considering the problems of many diseases, by using hierarchical classification. To stratify the disease. Combined with the above ideas, a deep DLCF model suitable for long text and multi-classification is designed. This model has obvious advantages in CMDD and other datasets. Compared with the baseline models, this model is superior to the baseline model in accuracy, recall and other indicators.
-
Investor sentiment and emotions have a strong impact on financial markets. In recent years there has been increasing interest in analyzing the sentiment of investors for stock price prediction using machine learning. Existing prediction models mostly depend on the analysis of trading data and company profit. few prediction theories have been built based on individual investors' sentiments. The fundamental reason is the difficulty to measure individual investors' sentiment.
-
Convolutional neural network (CNN) model based on deep learning has excellent performance for target detection. However, the detection effect is poor when the object is circular or tubular because most of the existing object detection methods are based on the traditional rectangular box to detect and recognize objects. To solve the problem, we propose the circular representation structure and RepVGG module on the basis of CenterNet and expand the network prediction structure, thus proposing a high-precision and high-efficiency lightweight circular object detection method RebarDet. Specifically, circular tubular type objects will be optimized by replacing the traditional rectangular box with a circular box. Second, we improve the resolution of the network feature map and the upper limit of the number of objects detected in a single detect to achieve the expansion of the network prediction structure, optimized for the dense phenomenon that often occurs in circular tubular objects. Finally, the multibranch topology of RepVGG is introduced to sum the feature information extracted by different convolution modules, which improves the ability of the convolution module to extract information. We conducted extensive experiments on rebar datasets and used AB-Score as a new evaluation method to evaluate RebarDet. The experimental results show that RebarDet can achieve a detection accuracy of up to 0.8114 and a model inference speed of 6.9 fps while maintaining a moderate amount of parameters, which is superior to other mainstream object detection models and verifies the effectiveness of our proposed method. At the same time, RebarDet’s high precision detection of round tubular objects facilitates enterprise intelligent manufacturing processes.
-
Mining the sentiment of the user on the internet via the context plays a significant role in uncovering the human emotion and in determining the exactness of the underlying emotion in the context. An increasingly enormous number of user-generated content (UGC) in social media and online travel platforms lead to development of data-driven sentiment analysis (SA), and most extant SA in the domain of tourism is conducted using document-based SA (DBSA). However, DBSA cannot be used to examine what specific aspects need to be improved or disclose the unknown dimensions that affect the overall sentiment like aspect-based SA (ABSA). ABSA requires accurate identification of the aspects and sentiment orientation in the UGC. In this book chapter, we illustrate the contribution of data mining based on deep learning in sentiment and emotion detection.
-
Objective. As the preclinical stage of Alzheimer’s disease (AD), Mild Cognitive Impairment (MCI) is characterized by hidden onset, which is difficult to detect early. Traditional neuropsychological scales are main tools used for assessing MCI. However, due to its strong subjectivity and the influence of many factors such as subjects’ educational background, language and hearing ability, and time cost, its accuracy as the standard of early screening is low. Therefore, the purpose of this paper is to propose a new key technology of fast digital early warning for MCI based on eye movement objective data analysis. Methodology. Firstly, four exploratory indexes (test durations, correlation degree, lengths of gaze trajectory, and drift rate) of MCI early warning are determined based on the relevant literature research and semistructured expert interview; secondly, the eye movement state is captured based on the eye tracker to realize the data extraction of four exploratory indexes. On this basis, the human-computer interactive 2.5-minute fast digital early warning paradigm for MCI is designed; thirdly, the rationality of the four early warning indexes proposed in this paper and their early warning effectiveness on MCI are verified. Results. Through the small sample test of human-computer interactive 2.5 fast digital early warning paradigm for MCI conducted by 32 elderly people aged 70–90 in a medical institution in Hangzhou, the two indexes of “correlation degree” and “drift rate” with statistical differences are selected. The experiment results show that AUC of this MCI early warning paradigm is 0.824. Conclusion. The key technology of human-computer interactive 2.5 fast digital early warning for MCI proposed in this paper overcomes the limitations of the existing MCI early warning tools, such as low objectification level, high dependence on professional doctors, long test time, requiring high educational level, and so on. The experiment results show that the early warning technology, as a new generation of objective and effective digital early warning tool, can realize 2.5-minute fast and high-precision preliminary screening and early warning for MCI in the elderly.
-
Digital Factory (DF) planning is the key of intelligent factory construction, where intelligent production technologies of big data analysis, cloud computing, blockchain, Internet of Things, artificial intelligence, 5G, Time Sensitive Network (TSN), Digital Twin (DT), additive manufacturing are included. By applying the modern techniques, DF performs great advantages on the aspects of product lifecycle management, enterprise resource planning, operation management, supply chain management, real-time database construction, advanced process control, as well as the new technologies of distributed control system and fieldbus control system. This article delivers a review of key issues of DF top-level design and planning from the aspects of networking, precision, automation and digitalization. Solutions are explored based on 5G, TSN and DT advanced technologies, literately and practically. Additionally, the article describes the method and application of efficient big data comprehensive solution. Therefore, this study contributes valuable decision-making support for DF applications.
-
With the fifth generation (5G) communication technology, the mobile multiuser networks have developed rapidly. In this paper, the performance analysis of mobile multiuser networks which utilize decode-and-forward (DF) relaying is considered. We derive novel outage probability (OP) expressions. To improve the OP performance, we study the power allocation optimization problem. To solve the optimization problem, we propose an intelligent power allocation optimization algorithm based on grey wolf optimization (GWO). We compare the proposed GWO approach with three existing algorithms. The experimental results reveal that the proposed GWO algorithm can achieve a smaller OP, thus improving system efficiency. Also, compared with other channel models, the OP values of the 2-Rayleigh model are increased by 81.2% and 66.6%, respectively.
Explore
Academic Units
Resource type
- Book (1)
- Book Section (6)
- Conference Paper (7)
- Journal Article (14)
- Report (1)
Cooperation
-
China
(2)
- Henan University (2)
- Macau (1)
Publication year
- Between 2000 and 2025 (29)