Your search

In authors or contributors
  • Neuromarketing lies at the intersection of three main disciplines: psychology, neuroscience, and marketing, and it has been a successful neuroscientific approach for the study of real-life choices such as consumer behavior [1]. A current gap in the cosmetics field is the lack of published research studies, considering the marketing investment done yearly in this category. With the rapid economic expansion and the rise of social media in China, consumers' interest in beauty is growing. Even though the Chinese cosmetics sector is rapidly expanding, no studies have been done with Chinese consumers. This study aims to employ the same approach as previously done in consumer neuroscience studies to evaluate cosmetic brands' marketing strategy to understand better if immediate emotional responses can be measured using Electrodermal Activity (EDA). Here, we focus on cosmetics products advertisement as a model to understand consumer preference formation and choice. Eighteen Chinese female consumers were recruited between 19 and 37 years old. From the results obtained, it was understood that none of the participants have voted for the product advertisement for which they showed higher emotional arousal. However, it appears that the participants' preference is for the products for which the brand awareness is stronger since the product advertisements with more votes are the ones for the Korean brand used. The product advertisements with Asian faces were the ones with more votes, suggesting that Asian faces have engaged consumer preference. However, the product advertisements for the Brazilian brands, unknown to the Chinese public, were the ones with fewer votes, although, those product advertisements were the ones with more emotional arousal per minute. Those advertisements were also those with non-Asian faces, suggesting that this feature influenced voting decisions. From this study, it has been observed that Electrodermal Activity is a measure of emotional arousal that by itself cannot be translated into consumer engagement. Therefore, it is also proposed to evaluate brand awareness in future studies related to product advertisements. The physical features of the people included in the advertisements is also suggested to be further evaluated in future studies since a different cultural background seems to influence the consumers' engagement. Furthermore, using EDA to complement other neurophysiological tools like facial expression analysis is also suggested for future studies to have evidence about the nature of the emotions raised.

  • In the wave of digital transformation, Chinese banks have prioritized digital banking services as key strategic goals, aiming to revolutionize the mobile banking experience. This study aims to assess the factors influencing the willingness to use the various financial and contextual services offered through digital banking. Specifically, it is proposed a model based on users' perceptions of mobile banking scenarios and examines how the development of digital banking services influences users' willingness to use them. The study involved qualitative in-depth interviews with 12 mobile banking users, with the interview content analyzed using Nvivo qualitative analysis software. The data analysis identified 9 core coding categories: Financial Professionalism, Security, Marketing Stimulation, Innovative Products, Use Experience, Strong Relationship, Trust, Perceived Usefulness, and Willingness to Use. These categories were further refined to construct a theoretical model of user willingness in digital banking services, drawing from the optimized Technology Acceptance Model (TAM). The findings provide valuable insights for the banking industry in Macau, aiding in understanding customer needs and supporting the positive development of mobile finance and contextual digital banking services in the region.

  • This research unveils to predict consumer ad preferences by detecting seven basic emotions, attention and engagement triggered by advertising through the analysis of two specific physiological monitoring tools, electrodermal activity (EDA), and Facial Expression Analysis (FEA), applied to video advertising, offering a twofold contribution of significant value. First, to identify the most relevant physiological features for consumer preference prediction. We integrated a statistical module encompassing inferential and exploratory analysis tools, which identified emotions such as Joy, Disgust, and Surprise, enabling the statistical differentiation of preferences concerning various advertisements. Second, we present an artificial intelligence (AI) system founded on machine learning techniques, encompassing k-Nearest Neighbors, Support Vector Machine, and Random Forest (RF). Our findings show that the RF technique emerged as the top performer, boasting an 81% Accuracy, 84% Precision, 79% Recall, and an F1-score of 81% in predicting consumer preferences. In addition, our research proposes an eXplainable AI module based on feature importance, which discerned Attention, Engagement, Joy, and Disgust as the four most pivotal features influencing consumer ad preference prediction. The results indicate that computerized intelligent systems based on EDA and FEA data can be used to predict consumer ad preferences based on videos and effectively used as supporting tools for marketing specialists.

  • <jats:title>Abstract</jats:title><jats:p>This research unveils to predict consumer ad preferences by detecting seven basic emotions, attention and engagement triggered by advertising through the analysis of two specific physiological monitoring tools, electrodermal activity (EDA), and Facial Expression Analysis (FEA), applied to video advertising, offering a twofold contribution of significant value. First, to identify the most relevant physiological features for consumer preference prediction. We integrated a statistical module encompassing inferential and exploratory analysis tools, which identified emotions such as Joy, Disgust, and Surprise, enabling the statistical differentiation of preferences concerning various advertisements. Second, we present an artificial intelligence (AI) system founded on machine learning techniques, encompassing k‐Nearest Neighbors, Support Vector Machine, and Random Forest (RF). Our findings show that the RF technique emerged as the top performer, boasting an 81% Accuracy, 84% Precision, 79% Recall, and an F1‐score of 81% in predicting consumer preferences. In addition, our research proposes an eXplainable AI module based on feature importance, which discerned Attention, Engagement, Joy, and Disgust as the four most pivotal features influencing consumer ad preference prediction. The results indicate that computerized intelligent systems based on EDA and FEA data can be used to predict consumer ad preferences based on videos and effectively used as supporting tools for marketing specialists.</jats:p>

Last update from database: 4/19/25, 5:01 PM (UTC)