Your search
Results 227 resources
-
Objective: As a world tourist destination, Macao is inevitably under the impact of the COVID-19 pandemic. However, the market of integrated resorts in Macao are shared by only a few casino concessionaries, together forming an oligopoly. While the firms attempted to adjust price, quantity and quality of their hotel services in response to the pandemic, they could not overlook the strategic interactions with other players in the market. Hence, this paper aims to investigate the possible impact of the pandemic on the oligopolistic strategies in the integrated resort market in Macao. Methodology: Application of a theoretical model of differentiated oligopoly to this six-firm case shows that price differences across firms depend on their quality differentiation. In order to analyze these price differences empirically, this paper collects data of hotel room rates of the integrated resorts from November, 2019 to mid-August, 2020, covering the periods before and after the outbreak of COVID-19. Originality: In the existing literature, there is a lack of studies of the oligopoly in the hospitality industry of Macao. Furthermore, the effect of COVID-19 is still ongoing, so this present paper is one of the first to perform such analysis. Results: The regression of each of the hotel price differentials on the COVID-19 dummy variable shows that COVID-19 has statistically significant impacts on almost all the price differentials. Intuitively, MGM and Wynn were in the high-price segment before and after the outbreak, while other firms switched positions in the low-price segment during the pandemic. One obvious downstream movement was by Conrad. According to the proposition derived from the theory, these imply that COVID-19 should have significant impact on the quality differentiation of the firms. Practical implications: The results are in line with the observations that the integrated resorts have rolled out staycation packages according to preferences of local residents. These quality adjustments observed in Macao’s hospitality industry currently only involved variable inputs rather than fixed inputs of production; therefore, the impact of COVID-19 should be seen as short-term effects. Keywords: Covid-19; Differentiated oligopoly; Hospitality industry; Hotel room rate; Oligopolistic market structure; Pricing strategy.
-
Background and objective Intrauterine Growth Restriction (IUGR) is a condition in which a fetus does not grow to the expected weight during pregnancy. There are several well documented causes in the literature for this issue, such as maternal disorder, and genetic influences. Nevertheless, besides the risk during pregnancy and labour periods, in a long term perspective, the impact of IUGR condition during the child development is an area of research itself. The main objective of this work is to propose a machine learning solution to identify the most significant features of importance based on physiological, clinical or socioeconomic factors correlated with previous IUGR condition after 10 years of birth. Methods In this work, 41 IUGR (18 male) and 34 Non-IUGR (22 male) children were followed up 9 years after the birth, in average (9.1786 ± 0.6784 years old). A group of machine learning algorithms is proposed to classify children previously identified as born under IUGR condition based on 24-hours monitoring of ECG (Holter) and blood pressure (ABPM), and other clinical and socioeconomic attributes. In additional, an algorithm of relevance determination based on the classifier is also proposed, to determine the level of importance of the considered features. Results The proposed classification solution achieved accuracy up to 94.73%, and better performance than seven state-of-the-art machine learning algorithms. Also, relevant latent factors related to HRV and BP monitoring are proposed, such as: day-time heart rate (day-time HR), day-night systolic blood pressure (day-night SBP), 24-hour standard deviation (SD) of SBP, dropped, morning cortisol creatinine, 24-hour mean of SDs of all NN intervals for each 5 minutes segment (24-hour SDNNi), among others. Conclusion With outstanding accuracy of our proposed solutions, the classification system and the indication of relevant attributes may support medical teams on the clinical monitoring of IUGR children during their childhood development.
-
Following the World Health Organization proclaims a pandemic due to a disease that originated in China and advances rapidly across the globe, studies to predict the behavior of epidemics have become increasingly popular, mainly related to COVID-19. The critical point of these studies is to discuss the disease's behavior and the progression of the virus's natural course. However, the prediction of the actual number of infected people has proved to be a difficult task, due to a wide range of factors, such as mass testing, social isolation, underreporting of cases, among others. Therefore, the objective of this work is to understand the behavior of COVID-19 in the state of Ceará to forecast the total number of infected people and to aid in government decisions to control the outbreak of the virus and minimize social impacts and economics caused by the pandemic. So, to understand the behavior of COVID-19, this work discusses some forecast techniques using machine learning, logistic regression, filters, and epidemiologic models. Also, this work brings a new approach to the problem, bringing together data from Ceará with those from China, generating a hybrid dataset, and providing promising results. Finally, this work still compares the different approaches and techniques presented, opening opportunities for future discussions on the topic. The study obtains predictions with R2 score of 0.99 to short-term predictions and 0.93 to long-term predictions.
-
The spontaneous symmetry breaking phenomena applied to Quantum Finance considers that the martingale state in the stock market corresponds to a ground (vacuum) state if we express the financial equations in the Hamiltonian form. The original analysis for this phenomena completely ignores the kinetic terms in the neighborhood of the minimal of the potential terms. This is correct in most of the cases. However, when we deal with the martingale condition, it comes out that the kinetic terms can also behave as potential terms and then reproduce a shift on the effective location of the vacuum (martingale). In this paper, we analyze the effective symmetry breaking patterns and the connected vacuum degeneracy for these special circumstances. Within the same scenario, we analyze the connection between the flow of information and the multiplicity of martingale states, providing in this way powerful tools for analyzing the dynamic of the stock markets.
-
COVID-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting the virus, enormously tap into the power of artificial intelligence and its predictive models for urgent decision support. This book showcases a collection of important predictive models that used during the pandemic, and discusses and compares their efficacy and limitations. Readers from both healthcare industries and academia can gain unique insights on how predictive models were designed and applied on epidemic data. Taking COVID19 as a case study and showcasing the lessons learnt, this book will enable readers to be better prepared in the event of virus epidemics or pandemics in the future.
-
The identification of barriers for e-commerce to thrive in specific countries is a topic of great interest. This work proposes two models to study the barriers to B2C e-commerce adoption in Portugal, highlighting obstacles less exploited by previous research: the impact of offline shopping pleasure and the influence of the distance to shopping malls on online shopping intent. An online survey was conducted based on different constructs. A multivariate OLS hierarchical regression was used to analyse the proposed models regarding the intention to buy online and the number of online purchases. The results revealed that customer satisfaction is a strong predictor of intent to buy online and that perceived product risk remains a barrier to e-commerce. Consumers living in high urbanised areas have more propensity to buy online. Helpful information is provided regarding the impact of context, culture, product, and individual barriers, showing that multichannel strategies are best suited for success.
-
The use of learning analytics (LA) in real-world educational applications is growing very fast as academic institutions realize the positive potential that is possible if LA is integrated in decision making. Education in schools on public health need to evolve in response to the new knowledge and th...
-
Crowdsensing exploits the sensing abilities offered by smart phones and users' mobility. Users can mutually help each other as a community with the aid of crowdsensing. The potential of crowdsensing has yet to be fully realized for improving public health. A protocol based on gamification to encoura...
-
It is plausible to assume that the component waves in ECG signals constitute a unique human characteristic because morphology and amplitudes of recorded beats are governed by multiple individual factors. According to the best of our knowledge, the issue of automatically classifying different ’identities’ of QRS morphology has not been explored within the literature. This work proposes five alternative mathematical models for representing different QRS morphologies providing the extraction of a set of features related to QRS shape. The technique incorporates mechanisms of combining the mathematical functions Gaussian, Mexican-Hat and Rayleigh probability density function and also a mechanism for clipping the waveform of those functions. The searching for the optimal parameters which minimize the normalized RMS error between each mathematical model and a given QRS search window enables to find an optimal model. Such modeling behaves as a robust alternative for delineating heartbeats, classifying beat morphologies, detecting subtle and anomalous changes, compression of QRS complex windows among others. The validation process evaluates the ability of each model to represent different QRS morphology classes within 159 full ECG signal records from QT database and 584 QRS search windows from MIT-BIH Arrhythmia database. From the experimental results, we rank the winning rates for which each mathematical model best models and also discriminates the most predominant QRS morphologies Rs, rS, RS, qR, qRs, R, rR’s and QS. Furthermore, the average time errors computed for QRS onset and offset locations when using the corresponding winner mathematical models for delineation purposes were, respectively, 12.87±8.5 ms and 1.47±10.06 ms.
-
It is known that the probability is not a conserved quantity in the stock market, given the fact that it corresponds to an open system. In this paper we analyze the flow of probability in this system by expressing the ideal Black-Scholes equation in the Hamiltonian form. We then analyze how the non-conservation of probability affects the stability of the prices of the Stocks. Finally, we find the conditions under which the probability might be conserved in the market, challenging in this way the non-Hermitian nature of the Black-Scholes Hamiltonian.
-
Vehicles solely powered by electricity are a major technological innovation that combines individual transportation needs and environmental sustainability, yet their market penetration is low. Research has traditionally indicated factors such as the vehicle’s purchasing price, driving range, and charging time as the main barriers to adoption. However, the decision to adopt a technology also depends on what the technology represents to the user; therefore, other factors may be important to explain individuals’ behavior. This study is a quantitative and cross-sectional look at the behavioral intention to adopt battery electric vehicles (BEVs) technology in the context of Macau. The research builds on the unified theory of acceptance and use of technology 2 (UTAUT 2) (Venkatesh et. al., 2012) to explain the characteristics of the local consumers. Besides the addition of image and environmental concern to the theoretical model, the study also put forward and evaluate the construct of technology show-off, an original measure of the visible and experiential characteristics of a technology. A sample of 236 Macau residents was analyzed by structural equation modeling (SEM). The analysis of the data supported the explanatory and predictive power of our model and helped to describe the idiosyncrasies of local residents. The results provide insights related to individual technology acceptance that could be useful in designing more accurate strategies and fostering the uptake of BEVs in Macau or markets that share similarities
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Business and Law
- Alessandro Lampo (22)
- Alexandre Lobo (92)
- Angelo Rafael (3)
- Douty Diakite (16)
- Emil Marques (3)
- Florence Lei (17)
- Ivan Arraut (18)
- Jenny Phillips (18)
- Sergio Gomes (2)
- Silva, Susana C. (11)
-
Faculty of Arts and Humanities
(2)
- Álvaro Barbosa (1)
Resource type
- Book (7)
- Book Section (44)
- Conference Paper (41)
- Document (4)
- Journal Article (108)
- Preprint (4)
- Presentation (9)
- Report (8)
- Thesis (2)