Your search
Results 227 resources
-
The area of clinical decision support systems (CDSS) is facing a boost in research and development with the increasing amount of data in clinical analysis together with new tools to support patient care. This creates a vibrant and challenging environment for the medical and technical staff. This chapter presents a discussion about the challenges and trends of CDSS considering big data and patient-centered constraints. Two case studies are presented in detail. The first presents the development of a big data and AI classification system for maternal and fetal ambulatory monitoring, composed by different solutions such as the implementation of an Internet of Things sensors and devices network, a fuzzy inference system for emergency alarms, a feature extraction model based on signal processing of the fetal and maternal data, and finally a deep learning classifier with six convolutional layers achieving an F1-score of 0.89 for the case of both maternal and fetal as harmful. The system was designed to support maternal–fetal ambulatory premises in developing countries, where the demand is extremely high and the number of medical specialists is very low. The second case study considered two artificial intelligence approaches to providing efficient prediction of infections for clinical decision support during the COVID-19 pandemic in Brazil. First, LSTM recurrent neural networks were considered with the model achieving R2=0.93 and MAE=40,604.4 in average, while the best, R2=0.9939, was achieved for the time series 3. Second, an open-source framework called H2O AutoML was considered with the “stacked ensemble” approach and presented the best performance followed by XGBoost. Brazil has been one of the most challenging environments during the pandemic and where efficient predictions may be the difference in saving lives. The presentation of such different approaches (ambulatory monitoring and epidemiology data) is important to illustrate the large spectrum of AI tools to support clinical decision-making.
-
The adoption of computer-aided diagnosis and treatment systems based on different types of artificial neural networks (ANNs) is already a reality in several hospital and ambulatory premises. This chapter aims to present a discussion focused on the challenges and trends of adopting these computerized systems, highlighting solutions based on different types and approaches of ANN, more specifically, feed-forward, recurrent, and deep convolutional architectures. One section is focused on the application of AI/ANN solutions to support cardiology in different applications, such as the classification of the heart structure and functional behavior based on echocardiography images; the automatic analysis of the heart electric activity based on ECG signals; and the diagnosis support of angiogram images during surgical interventions. Finally, a case study is presented based on the application of a deep learning convolutional network together with a recent technique called transfer learning to detect brain tumors using an MRI images data set. According to the findings, the model has a high degree of specificity (precision of 0.93 and recall of 0.94 for images with no brain tumor) and can be used as a screening tool for images that do not contain a brain tumor. The f1-score for images with brain tumor was 0.93. The results achieved are very promising and the proposed solution may be considered to be used as a computer-aided diagnosis tool based on deep learning convolutional neural networks. Future works will consider other techniques and compare them with the one presented here. With the comprehensive approach and overview of multiple applications, it is valid to conclude that computer-aided diagnosis and treatment systems are important tools to be considered today and will be an essential part of the trend of personalized medicine over the coming years.
-
In this chapter, a mathematical model explaining generically the propagation of a pandemic is proposed, helping in this way to identify the fundamental parameters related to the outbreak in general. Three free parameters for the pandemic are identified, which can be finally reduced to only two independent parameters. The model is inspired in the concept of spontaneous symmetry breaking, used normally in quantum field theory, and it provides the possibility of analyzing the complex data of the pandemic in a compact way. Data from 12 different countries are considered and the results presented. The application of nonlinear quantum physics equations to model epidemiologic time series is an innovative and promising approach.
-
A significant number of people infected by COVID19 do not get sick immediately but become carriers of the disease. These patients might have a certain incubation period. However, the classical compartmental model, SEIR, was not originally designed for COVID19. We used the simple, commonly used SEIR model to retrospectively analyse the initial pandemic data from Singapore. Here, the SEIR model was combined with the actual published Singapore pandemic data, and the key parameters were determined by maximizing the nonlinear goodness of fit R2 and minimizing the root mean square error. These parameters served for the fast and directional convergence of the parameters of an improved model. To cover the quarantine and asymptomatic variables, the existing SEIR model was extended to an infectious disease model with a greater number of population compartments, and with parameter values that were tuned adaptively by solving the nonlinear dynamics equations over the available pandemic data, as well as referring to previous experience with SARS. The contribution presented in this paper is a new model called the adaptive SEAIRD model; it considers the new characteristics of COVID19 and is therefore applicable to a population including asymptomatic carriers. The predictive value is enhanced by tuning of the optimal parameters, whose values better reflect the current pandemic.
-
The COVID-19 pandemic spread generated an urgent need for computational systems to model its behavior and support governments and healthcare teams to make proper decisions. There are not many cases of global pandemics in history, and the most recent one has unique characteristics, which are tightly connected to the current society’s lifestyle and beliefs, creating an environment of uncertainty. Because of that, the development of mathematical/computational models to forecast the pandemic behavior since its beginning, i.e., with a restricted amount of data collected, is necessary. This chapter focuses on the analysis of different data mining techniques to allow the pandemic prediction with a small amount of data. A case study is presented considering the data from Wuhan, the Chinese city where the virus was first detected, and the place where the major outbreak occurred. The PNN + CF method (Polynomial Neural Network with Corrective Feedback) is presented as the technique with the best prediction performance. This is a promising method that might be considered in future eventual waves of the current pandemic or event to have a suitable model for future epidemic outbreaks around the world.
-
There are several techniques to support simulation of time series behavior. In this chapter, the approach will be based on the Composite Monte Carlo (CMC) simulation method. This method is able to model future outcomes of time series under analysis from the available data. The establishment of multiple correlations and causality between the data allows modeling the variables and probabilistic distributions and subsequently obtaining also probabilistic results for time series forecasting. To improve the predictor efficiency, computational intelligence techniques are proposed, including a fuzzy inference system and an Artificial Neural Network architecture. This type of model is suitable to be considered not only for the disease monitoring and compartmental classes, but also for managerial data such as clinical resources, medical and health team allocation, and bed management, which are data related to complex decision-making challenges.
-
The application of different tools for predicting COVID19 cases spreading has been widely considered during the pandemic. Comparing different approaches is essential to analyze performance and the practical support they can provide for the current pandemic management. This work proposes using the susceptible-exposed-asymptomatic but infectious-symptomatic and infectious-recovered-deceased (SEAIRD) model for different learning models. The first analysis considers an unsupervised prediction, based directly on the epidemiologic compartmental model. After that, two supervised learning models are considered integrating computational intelligence techniques and control engineering: the fuzzy-PID and the wavelet-ANN-PID models. The purpose is to compare different predictor strategies to validate a viable predictive control system for the COVID19 relevant epidemiologic time series. For each model, after setting the initial conditions for each parameter, the prediction performance is calculated based on the presented data. The use of PID controllers is justified to avoid divergence in the system when the learning process is conducted. The wavelet neural network solution is considered here because of its rapid convergence rate. The proposed solutions are dynamic and can be adjusted and corrected in real time, according to the output error. The results are presented in each subsection of the chapter.
-
Covid-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting against the virus, enormously tap on the power of AI and its data analytics models for urgent decision supports at the greatest efforts, ever seen from human history. This book showcases a collection of important data analytics models that were used during the epidemic, and discusses and compares their efficacy and limitations. Readers who from both healthcare industries and academia can gain unique insights on how data analytics models were designed and applied on epidemic data. Taking Covid-19 as a case study, readers especially those who are working in similar fields, would be better prepared in case a new wave of virus epidemic may arise again in the near future.
-
At the beginning of 2020, the World Health Organization (WHO) started a coordinated global effort to counterattack the potential exponential spread of the SARS-Cov2 virus, responsible for the coronavirus disease, officially named COVID-19. This comprehensive initiative included a research roadmap published in March 2020, including nine dimensions, from epidemiological research to diagnostic tools and vaccine development. With an unprecedented case, the areas of study related to the pandemic received funds and strong attention from different research communities (universities, government, industry, etc.), resulting in an exponential increase in the number of publications and results achieved in such a small window of time. Outstanding research cooperation projects were implemented during the outbreak, and innovative technologies were developed and improved significantly. Clinical and laboratory processes were improved, while managerial personnel were supported by a countless number of models and computational tools for the decision-making process. This chapter aims to introduce an overview of this favorable scenario and highlight a necessary discussion about ethical issues in research related to the COVID-19 and the challenge of low-quality research, focusing only on the publication of techniques and approaches with limited scientific evidence or even practical application. A legacy of lessons learned from this unique period of human history should influence and guide the scientific and industrial communities for the future.
-
It is argued that the role of the Chinese government to support the cross-border operations of Chinese firms is to assist these firms in overcoming their limited established brands, and their disadvantages in technology and managerial resources, which were also the reasons why such firms decided to enter emerging markets instead of developed markets. This strategic choice is preferred to avoid direct confrontation with established firms from developed countries endowed with superior ownership advantages. Therefore, Chinese resources seeking firms innovate by increasing investment in developing and emerging markets to develop unique ownership advantages for sustainable market development and competitive advantage. This research investigates the ownership advantages of resources seeking Chinese firms in these markets using the OLI theory. The paper contributes to explaining the specific advantages of Chinese MNEs when entering emerging markets. The study applied a two-stage qualitative methodology to examine Chinese firms operating in Nigeria. The first stage included an exploratory study based on interviews with key informants and experts while the second stage included a case study methodology. The study focused on resources seeking Chinese MNEs operating in Nigeria.
-
Macao is well known for its gaming industry. However, there are also many traditional small-to-medium enterprises which are family-owned and run. There is no doubt that social capital is one of the key competitive advantages that family businesses possess, particularly when it comes to Chinese businesses with strong family values that emphasize the importance of trustworthiness and guanxi (relationships). As opposed to other forms of capital, social capital cannot be passed from one generation to another through the will of the incumbents. So, how is social capital passed on in family businesses from one generation to the next? Based on an in-depth study of five cases of successful family businesses in Macao, this research identified the forms of social capital present in business families and the succession process of these firms. From the generalizations drawn from the five cases, a theoretical framework is proposed to understand the intergenerational transmission of social capital in Chinese family businesses
-
This paper aimed to build up the theorical and conceptual understanding of future forecasting study of Macau’s GDP and Gross Gaming Revenue (GGR) by co-movement of economic indicators. Macau GDP and GGR showed co-movements with a number of time series economic indicators, including China’s exports and imports, China’s manufacturing PMI, non-manufacturing PMI, China's electricity production growth, share price of some Macau’s gaming operators, etc. These time series data can be found in statistics departments of China, Macau and Hong Kong, stock exchanges, and international organizations such as the International Monetary Fund (IMF), the World Bank, the World Trade Organization (WTO). Burns and Mitchell’s study in 1946 identified co-movements between economic indicators and being further carried out and developed leading, coincident and lagging indicators, which is essential for future econometric models and nowcasting techniques developments to study these co-movements. In particular, with the proper application of nowcasting techniques, future studies can exploit the data of leading and coincident economic indicators to forecast Macau’s GDP and GGR within an acceptable level of error. Since Macau is a “monotown,” where the gaming revenue makes a significant contribution to the economy. The forecasting of gaming revenue is crucial as it aids the gambling and tourism industries in preparing supply and provides information to policymakers to plan for the near future. This research also contributes to understand Macau’s economy by investigating its internal and external economic variables.
-
The adoption of IoT for smart health applications is a relevant tool for distributed and intelligent automatic diagnostic systems. This work proposes the development of an integrated solution to monitor maternal and fetal signals for high-risk pregnancies based on IoT sensors, feature extraction based on data analytics, and an intelligent diagnostic aid system based on a 1-D convolutional neural network (CNN) classifier. The fetal heart rate and a group of maternal clinical indicators, such as the uterine tonus activity, blood pressure, heart rate, temperature, and oxygen saturation are monitored. Multiple data sources generate a significant amount of data in different formats and rates. An emergency diagnostic subsystem is proposed based on a fog computing layer and the best accuracy was 92.59% for both maternal and fetal emergency. A smart health analytics system is proposed for multiple feature extraction and the calculation of linear and nonlinear measures. Finally, a classification technique is proposed as a prediction system for maternal, fetal, and simultaneous health status classification, considering six possible outputs. Different classifiers are evaluated and a proposed CNN presented the best results, with the F1-score ranging from 0.74 to 0.91. The results are validated based on the diagnosis provided by two specialists. The results show that the proposed system is a viable solution for maternal and fetal ambulatory monitoring based on IoT.
-
Monitoring signals such as fetal heart rate (FHR) are important indicators of fetal well-being. Computer-assisted analysis of FHR patterns has been successfully used as a decision support tool. However, the absence of a gold standard for the building blocks decision-making in the systems design process impairs the development of new solutions. Here we propose a prognostic model based on advanced signal processing techniques and machine learning algorithms for the fetal state assessment within a comprehensive evaluation process. Feature-engineering-based and time-series-based machine learning classifiers were modeled into three data segmentation schemas for CTU-UHB, HUFA, and DB-TRIUM datasets and the generalization performance was assessed by a two-way cross-dataset evaluation. It has been shown that the feature-based algorithms outperformed the time-series ones on data-limited scenarios. The Support Vector Machines (SVM) obtained the best results on the datasets individually: specificity (85.6% ) and sensitivity (67.5%). On the other hand, the most effective generalization results were achieved by the Multi-layer perceptron (MLP) with a specificity of 71.6% and sensitivity of 61.7%. The overall process provided a combination of techniques and methods that increased the final prognostic model performance, achieving relevant results and requiring a smaller amount of data when compared to the state-of-the-art fetal status assessment solutions.
-
Human resources are essential to the survival, success, and long-term growth of a company. Hotel is an industry requiring a high level of human resources for delivering high-quality personal service to the hotel guests to maintain its competitiveness in the business environment. With the rapid economic growth in Macao started in 2002, all the industries have been growing fast and competing fiercely for the limited manpower in Macao. However, the Macao hotel industry has been losing its attractiveness in the Macao labor market and needs to rely on non-local workers with a limited stay in Macao. The management team of the Macao hotel industry is looking for a solution to maintain a stable workforce. Therefore, a study has been conducted on the effectiveness of its employee retention strategies. A questionnaire was designed to collect the preferences of the employees and interviews were conducted to understand the perspective of the management team toward the employee retention strategies. The study shows the employee strategies are focused on key employees’ interests such as career development and prospect. However, the communication between the management team and employees failed and led to employee turnover.
-
China growing awareness of sustainability has brought out relevant aspects to move towards a green environment. Since its subscription in 2016, China has been committed to implementing the Paris Agreement, and the Greater Bay Area (GBA) development plan prioritizes ecology and pursuing green development. The primary purpose of this research is to perceive the companies' insights concerning the implementation of sustainable buildings’ projects in Macau. For this multi-case study analysis, primary data was gathered from interviews with two groups involved in the construction projects’ lifecycle: Consultants and Contractors, to analyze different perceptions and concerns. The interviews considered two different themes about the main topic: (1) Perception on Companies’ Experience in Sustainable Projects; (2) Key Drivers towards Sustainable Buildings’ Projects’ Implementation. In conclusion, according to the analyzed data, it is essential to notice that companies’ background and the market particularities affect their corporate performance specially connected to the green construction frameworks. The data also indicate that it is necessary to move towards regulations and policies to change corporate and people's mindset.
-
Despite the general good intentions towards the environment, individuals tend to adopt traditional internal combustion vehicles. Drawing from technology research, this study focuses on the impact of society - in the form of subjective norm and image – on the behavioral intention to adopt a technology. More precisely, this study seeks to explore to which extent societal influences drive the behavioral intention to adopt battery electric vehicles (BEV) technology. A self-administered survey was used for this purpose. The analysis of the data from a sample of 111 respondents showed significant relationships between the predictors and the target behavioral outcome. The study also revealed that subjective norm and image are particularly significant factors for the segment of BEV owners. The findings suggest that marketers and practitioners incorporate social elements into their product communication strategies in order to encourage the uptake of environmentally-sound technologies.
Explore
USJ Theses and Dissertations
Academic Units
-
Faculty of Business and Law
- Alessandro Lampo (22)
- Alexandre Lobo (92)
- Angelo Rafael (3)
- Douty Diakite (16)
- Emil Marques (3)
- Florence Lei (17)
- Ivan Arraut (18)
- Jenny Phillips (18)
- Sergio Gomes (2)
- Silva, Susana C. (11)
-
Faculty of Arts and Humanities
(2)
- Álvaro Barbosa (1)
Resource type
- Book (7)
- Book Section (44)
- Conference Paper (41)
- Document (4)
- Journal Article (108)
- Preprint (4)
- Presentation (9)
- Report (8)
- Thesis (2)