Your search
Results 39 resources
-
Corporate leaders are constantly dealing with stress in parallel with continuous decision-making processes. The impact of acute stress on decision-making activities is a relevant area of study to evaluate the impact of the decisions made, and create tools and mechanisms to cope with the inevitable exposure to stress and better manage its impact. The intersection of leadership and neurosciences techniques is called Neuroleadership. In this work, an experiment is proposed to detect and measure the emotional arousal of two groups of business professionals, divided into two groups. The first one is the intervention/stress group, n=30, exposed to stressful conditions, and the control group, n=14, not exposed to stress. The participants are submitted to a sequence of computerized stimuli, such as watching videos, answering survey questions, and making decisions in a realistic office environment. The Galvanic Skin Response (GSR) biosensor monitors emotional arousal in real-time. The experiment design implemented stressors such as visual effects, defacement, unfairness, and time-constraint for the intervention group, followed by decision-making tasks. The results indicate that emotional arousal was statistically significantly higher for the intervention/stress group, considering Shapiro and Mann-Whitney tests. The work indicates that GSR is a reliable stress detector and may be useful to predict negative impacts on executive professionals during decision-making activities.
-
There are many systematic reviews on predicting stock. However, each of them reveals a different portion of the hybrid AI analysis and stock prediction puzzle. The principal objective of this research was to systematically review and conclude the systematic reviews on AI and stock to provide particularly useful predictions for making future strategies for stock markets. Keywords that would fall under the broad headings of AI and stock prediction were looked up in two databases, Scopus and Web of Science. We screened 69 titles and read 43 systematic reviews which include more than 379 studies before retaining 10 of them.
-
The invention of neuroscience has benefited medical practitioners and businesses in improving their management and leadership. Neuromarketing, a field that combines neuroscience and marketing, helps businesses understand consumer behaviour and how they respond to advertising stimuli. This study aims to investigate the consumer purchase intention and preferences to improve the marketing management of the brand, based on neuroscientific tools such as emotional arousal using Galvanic Skin Response (GSR) sensors, eye-tracking, and emotion analysis through facial expressions classification. The stimuli for the experiment are two advertisement videos from the Macau tea brand “Guanding Teahouse” followed by a survey. The experiment was conducted on 40 participants. 76.2% of participants that chose the same product in the first survey responded with the same choice of products in the second survey. The GSR peaks in video ad 1 measured a total of 60. On the other hand, video ad 2 counted a total of 55 GSR peaks. The emotions in ad1 and ad2 have similar responses, with an attention percentage of 76%. The results showed that ad1 has a higher engagement time of 11.1% and ad2 has 9.6%, but only 19 of the respondent’s conducted engagement in video ad1, and 31 showed engagement in video ad2. The results demonstrated that although ad 1 has higher engagement rates, the respondents are more attracted to video ad 2. Therefore, ad2 has better marketing power than ad 1. Overall, this study bridges the gap of no previous research on measuring tea brand advertisements with the neuroscientific method. The results provide valuable insights for marketers to develop better advertisements and marketing campaigns and understand consumer preferences by personalising and targeting advertisements based on consumers' emotional responses and behaviour of consumers' purchase intentions. Future research could explore advertisements targeting different demographics.
-
Human emotions can be associated with decision-making, and emotions can generate behaviors. Due to the fact that it could be biased and exhaustively complex to examine how human beings make choices, it is necessary to consider relevant groups of study, such as stock traders and non-traders in finance. This work aims to analyze the connection between emotions and the decision-making process of investors and non-investors submitted to the same set of stimuli to understand how emotional arousal might dictate the decision process. Neuroscience monitoring tools such as Real-Time Facial Expression Analysis (AFFDEX), Eye-Tracking, and Galvanic Skin Response (GSR) were adopted to monitor the related experiments of this paper and its accompanying analysis process. Thirty-seven participants attended the study, 24 were classified as stock traders, and 13 were non-traders; the mean age for the groups was 35 and 25, respectively. The designed experiment initially disclosed a thought-provoking result between the two groups under the certainty and risk-seeking prospect theory; there were more risk-takers among non-investors at 75%, while investors were inclined toward certainty at 79.17%. The implication could be that the non-investing individuals were less complex in thought and therefore pursued higher returns besides a high probability of losing the game. In addition, the automatic emotion classification system indicates that when non-investors confronted a stock trending chart beyond their acquaintance or knowledge, they were psychologically exposed to fear, anger, sadness, and surprise. On the contrary, investors were detected with disgust, joy, contempt, engagement, sadness, and surprise, where sadness and surprise overlapped in both parties. Under time pressure conditions, 54.05% of investors or non-investors tend to make decisions after the peak(s) of emotional arousal. Variations were found in the deciding points of the slopes: 2.70% were decided right after the peak(s), 37.84% waited until the emotions turned stable, and 13.51% were determined as the emotional indicators started to slide downwards. Several combinations of emotional responses were associated with decisions. For example, negative emotions could induce passive decision-making, in this case, to sell the stock; nevertheless, it was also examined that as the slope slipped downwards to a particular horizontal point, the individuals became more optimistic and selected the "BUY" option. Future works may consider expanding the study to larger sample size, different demographic groups, and other biometrics for further analysis and conclusions.
-
Over the past several decades, the dichotomy between traditional and emerging donors has been based upon the notion that emerging donors (such as China) support authoritarian regimes and use foreign aid to pursue their economic interests at the expense of the poor in the recipient countries. Accordingly, Western donors, media, and scholars portray Chinese aid as non-poverty-focused. This study aims to review and analyze whether the dichotomy between traditional and emerging donors is still relevant in the current aid system and to propose a new and rigorous criterion for recategorizing donors. In terms of methodology, this study relies on secondary data, including scholarly works on traditional and emerging donors and foreign aid policy documents. Conclusions based on the research indicate that the divide between traditional donors and (re)emerging donors is becoming more ambiguous. The literature review indicates that the two donors’ aids had a mixed impact and that their approaches were similar. This paper highlights the importance of developing different recategorization criteria depending on the impact of aid.
-
As the rate of change increases exponentially, organizations must adapt quickly to the business landscape's volatility, uncertainty, complexity, and ambiguity (VUCA). As a result, organizations must implement agile strategies and practices to ensure their responsiveness and readiness to any changes brought about by internal or external factors. With a greater number of changes, change agents are tasked with implementing various change management methodologies to ensure that change recipients accept change initiatives. This research will look at one of the methodologies used by change agents, the use of nudges from Thaler and Sunstein's Nudge Theory, which is a subtle intervention to influence an individual's decision-making with the goal of steering them towards a specific desired outcome; and analyze their effectiveness towards the change recipients when implemented. Change agents were interviewed on the application of Nudge Theory to change recipients when managing to change initiatives within their respective organizations. The results indicate that the use of nudges created by the change agents can significantly impact the level of resistance from the change recipients. If used correctly, the Nudge Theory can mitigate change resistance, and the success of a change initiative is higher. But, if change recipients are forced to comply, their resistance will be greater, affecting the organization overall.
-
The use of learning analytics (LA) in real-world educational applications is growing very fast as academic institutions realize the positive potential that is possible if LA is integrated in decision making. Education in schools on public health need to evolve in response to the new knowledge and th...
-
In recent years, the integration of Machine Learning (ML) techniques in the field of healthcare and public health has emerged as a powerful tool for improving decision-making processes [...]
-
Since the beginning of 2020, Coronavirus Disease 19 (COVID-19) has attracted the attention of the World Health Organization (WHO). This paper looks into the infection mechanism, patient symptoms, and laboratory diagnosis, followed by an extensive assessment of different technologies and computerized models (based on Electrocardiographic signals (ECG), Voice, and X-ray techniques) proposed as a diagnostic tool for the accurate detection of COVID-19. The found papers showed high accuracy rate results, ranging between 85.70% and 100%, and F1-Scores from 89.52% to 100%. With this state-of-the-art, we concluded that the models proposed for the detection of COVID-19 already have significant results, but the area still has room for improvement, given the vast symptomatology and the better comprehension of individuals’ evolution of the disease.
-
In the last few years, the tourism industry has experienced rapid expansion and diversification, making it one of the fastest-growing financial industries in the world. Consequently, the hotel industry has significantly affected the environment's long-term viability. Many hotels have begun voluntarily implementing environmentally sustainable practices as they become more aware of their ecological footprint. There has been a great deal of discussion about the effects of hotel operations on the environment and tourism sustainability in Macau. It is because of these negative impacts that hoteliers have adopted green practices in an attempt to minimize them. By developing sustainability reports, hotels can set goals, measure performance, and manage change, resulting in better sustainability. It could also be viewed as a strategy to enhance the company’s sustainability reporting to ensure stakeholders know what the company does. The objective of this study is twofold based on the analysis of the official sustainability reports of four major hotel chains. Firstly, seven categories of sustainable practices effectively adopted by these chain hotels are identified and clusterized. Second, it is presented in which areas some hotels performed more efficiently than others, considering the UN Sustainable Development Goals (SDGs) as a reference. The results allow a comprehensive clusterized analysis of the industry in a highly developed gaming and entertainment area of South China and create a clear comparison between relevant players and their concerns about sustainability practices.
-
Crowdsensing exploits the sensing abilities offered by smart phones and users' mobility. Users can mutually help each other as a community with the aid of crowdsensing. The potential of crowdsensing has yet to be fully realized for improving public health. A protocol based on gamification to encoura...
-
In this chapter, a mathematical model explaining generically the propagation of a pandemic is proposed, helping in this way to identify the fundamental parameters related to the outbreak in general. Three free parameters for the pandemic are identified, which can be finally reduced to only two independent parameters. The model is inspired in the concept of spontaneous symmetry breaking, used normally in quantum field theory, and it provides the possibility of analyzing the complex data of the pandemic in a compact way. Data from 12 different countries are considered and the results presented. The application of nonlinear quantum physics equations to model epidemiologic time series is an innovative and promising approach.
-
At the beginning of 2020, the World Health Organization (WHO) started a coordinated global effort to counterattack the potential exponential spread of the SARS-Cov2 virus, responsible for the coronavirus disease, officially named COVID-19. This comprehensive initiative included a research roadmap published in March 2020, including nine dimensions, from epidemiological research to diagnostic tools and vaccine development. With an unprecedented case, the areas of study related to the pandemic received funds and strong attention from different research communities (universities, government, industry, etc.), resulting in an exponential increase in the number of publications and results achieved in such a small window of time. Outstanding research cooperation projects were implemented during the outbreak, and innovative technologies were developed and improved significantly. Clinical and laboratory processes were improved, while managerial personnel were supported by a countless number of models and computational tools for the decision-making process. This chapter aims to introduce an overview of this favorable scenario and highlight a necessary discussion about ethical issues in research related to the COVID-19 and the challenge of low-quality research, focusing only on the publication of techniques and approaches with limited scientific evidence or even practical application. A legacy of lessons learned from this unique period of human history should influence and guide the scientific and industrial communities for the future.
-
The adoption of project management techniques is a crucial decision for corporate governance in construction companies since the management of areas such as risk, cost, and communications is essential for the success or failure of an endeavor. Nevertheless, different frameworks based on traditional or agile methodologies are available with several approaches, which may create several ways to manage projects. The primary purpose of this work is to investigate the adequate project management methodology for the construction industry from a general perspective and consider a case study from Macau. The methodology considered semi-structured interviews and a survey comparing international and local project managers from the construction industry. The interviews indicate that most construction project managers still follow empirical methods with no specific methodology but consider the adoption of traditional waterfall approaches. In contrast, according to the survey, most project managers and construction managers agree that the project's efficacy needs to increase, namely in planning, waste minimization, communication increase, and focus on the Client's feedback. In addition, there seems to be a clear indication that agile methodology could be implemented in several types of projects, including hospitality development projects. A hybrid development approach based on the Waterfall and Agile methodologies as a tool for the project management area may provide a more suitable methodology for project managers to follow.
-
It is known that the probability is not a conserved quantity in the stock market, given the fact that it corresponds to an open system. In this paper we analyze the flow of probability in this system by expressing the ideal Black-Scholes equation in the Hamiltonian form. We then analyze how the non-conservation of probability affects the stability of the prices of the Stocks. Finally, we find the conditions under which the probability might be conserved in the market, challenging in this way the non-Hermitian nature of the Black-Scholes Hamiltonian.
-
This research unveils to predict consumer ad preferences by detecting seven basic emotions, attention and engagement triggered by advertising through the analysis of two specific physiological monitoring tools, electrodermal activity (EDA), and Facial Expression Analysis (FEA), applied to video advertising, offering a twofold contribution of significant value. First, to identify the most relevant physiological features for consumer preference prediction. We integrated a statistical module encompassing inferential and exploratory analysis tools, which identified emotions such as Joy, Disgust, and Surprise, enabling the statistical differentiation of preferences concerning various advertisements. Second, we present an artificial intelligence (AI) system founded on machine learning techniques, encompassing k-Nearest Neighbors, Support Vector Machine, and Random Forest (RF). Our findings show that the RF technique emerged as the top performer, boasting an 81% Accuracy, 84% Precision, 79% Recall, and an F1-score of 81% in predicting consumer preferences. In addition, our research proposes an eXplainable AI module based on feature importance, which discerned Attention, Engagement, Joy, and Disgust as the four most pivotal features influencing consumer ad preference prediction. The results indicate that computerized intelligent systems based on EDA and FEA data can be used to predict consumer ad preferences based on videos and effectively used as supporting tools for marketing specialists.
-
Nowadays, the increasing number of medical diagnostic data and clinical data provide more complementary references for doctors to make diagnosis to patients. For example, with medical data, such as electrocardiography (ECG), machine learning algorithms can be used to identify and diagnose heart disease to reduce the workload of doctors. However, ECG data is always exposed to various kinds of noise and interference in reality, and medical diagnostics only based on one-dimensional ECG data is not trustable enough. By extracting new features from other types of medical data, we can implement enhanced recognition methods, called multimodal learning. Multimodal learning helps models to process data from a range of different sources, eliminate the requirement for training each single learning modality, and improve the robustness of models with the diversity of data. Growing number of articles in recent years have been devoted to investigating how to extract data from different sources and build accurate multimodal machine learning models, or deep learning models for medical diagnostics. This paper reviews and summarizes several recent papers that dealing with multimodal machine learning in disease detection, and identify topics for future research.
-
COVID-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting the virus, enormously tap into the power of artificial intelligence and its predictive models for urgent decision support. This book showcases a collection of important predictive models that used during the pandemic, and discusses and compares their efficacy and limitations. Readers from both healthcare industries and academia can gain unique insights on how predictive models were designed and applied on epidemic data. Taking COVID19 as a case study and showcasing the lessons learnt, this book will enable readers to be better prepared in the event of virus epidemics or pandemics in the future.
Explore
Academic Units
-
Faculty of Business and Law
- Alexandre Lobo (39)
- Douty Diakite (1)
- Ivan Arraut (2)
- Sergio Gomes (1)
- Silva, Susana C. (1)
Resource type
- Book (1)
- Book Section (15)
- Conference Paper (4)
- Journal Article (17)
- Preprint (2)
United Nations SDGs
Student Research and Output
Publication year
-
Between 2000 and 2025
(39)
-
Between 2010 and 2019
(1)
- 2019 (1)
- Between 2020 and 2025 (38)
-
Between 2010 and 2019
(1)