
Repertory Grid: Investigating Personal Constructs of
Novice Programmers

Neena Thota
University of Saint Joseph

Nape, Rua de Londres 16, Macau
+853 66814445

neenathota@usj.edu.mo

ABSTRACT

In this paper, the repertory grid is presented as a technique to
explore novice programmers’ experiences within the context of an
action research project. The theoretical and methodological
aspects of the technique are discussed. The findings from the
technique that combined quantitative and qualitative data analysis
methods are provided. These findings relate to the learning
process, learning content, and learning support as experienced by
the students in an introductory object-oriented programming
course. The repertory grid technique is then appraised for its
relevance and usefulness to the project, and for its contribution to
the diversity of computer science research methods. Insights
gained from the use of the technique are shared with the
community of computer science educators.

Keywords

Repertory grid, novice programming, mixed methods.

1. INTRODUCTION
The repertory grid technique is a form of structured interview to
find out a participant's preferences on a given topic and the way
these preferences are ordered on a rating scale. The repertory grid
was designed by Kelly [27] who believed that to understand a
person one has to understand how that person interprets personal
choices. Kelly drew his insights from his Personal Construct
Theory (PCT) which supports interpretivist research and is guided
by pragmatic logic that assigns the burden of discovery to the
researcher to find out what the participant in the phenomenon
under investigation has learned.

This paper describes an action research project in which the
repertory grid technique was used to gain a deeper understanding
of the perspectives of novice programmers. The experience of
using the technique and the findings from the study are presented,
along with recommendations for other computer science educators
who teach introductory programming. It is proposed that there
should be a wider use of the repertory grid as a research method in
Computing Education Research (CER).

The outline of the paper is as follows: In Section 2, the theoretical
background of the technique is explained. In Section 3, the
appropriateness of using the technique to explore the experiences
of novice programmers is examined. Section 4 establishes the
context of the action research project in which the repertory grid
technique was used. Section 5 deals with data collection
procedures such as grid setup and elicitation of the participants’
preferences. This section also describes the content analysis
techniques that integrated quantitative and qualitative measures.
Empirical findings about the learning experiences of the students
are categorized and summarized in Section 6. The paper
concludes (Section 7) with a discussion of the implications of the
findings, and with a critique of the repertory grid as a technique
for understanding the personal constructs of novice programmers.

2. THEORETICAL BACKGROUND
The repertory grid is a set of rating scales with the ratings
arranged in rows and columns. The four components [26] of a
repertory grid are: (a) the topic that deals with the general field of
personal knowledge within which the grid is situated; (b) the
elements that are the examples of the topic; (c) the constructs
(preferences elicited from the participant) that are the units of
description about the elements; and (d) the ratings that each
participant gives to each element on each construct. During the
interview, three of the elements are taken together and the
respondent is asked which two of the elements are the same in
some way, and different from the third element. The participant’s
expressions are noted as constructs on a rating scale. The
participant then rates the elements on this construct. The process
is repeated until no more constructs can be elicited. The repertory
grid yields data in the form of numeric grid ratings and descriptive
constructs. The quantitative data can be statistically analyzed,
while the personal constructs are amenable to qualitative content
analysis.

The repertory grid technique is anchored in PCT, with its
fundamental principle of constructive alternativism that perceives
each person as a scientist capable of formulating constructs about
the world. Kelly [27] postulated eleven corollaries to amplify his
theory: People develop varying representations of their
experiences (Experience corollary) by representing them as
constructs (Construction corollary), with each individual being
unique in his or her way of seeing the world (Individuality
corollary). However, people are similar to the extent that they see
meaning in events similarly (Commonality corollary), and even
though a person can choose alternatives (Choice corollary), it is
possible to be aware of and understand the constructs of others
(Sociality Corollary). The constructs are bipolar in nature
(Dichotomy corollary), and refer to a finite range of events
(Range corollary). The constructs are arranged in a hierarchy
(Organization corollary), with some constructs more applicable to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Koli Calling ’11, November 17--20, 2011, Koli, Finland.
Copyright 2011 ACM 978-1-4503-1052-9/11/11…$10.00.

23

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2094131.2094137&domain=pdf&date_stamp=2011-11-17

many events (Modulation corollary), while others have less
internal consistency (Fragmentation corollary). These corollaries
are worked into the design of the repertory grid that allows a
person to express bipolar constructs about related events and to
rate the constructs according to individual preferences.

The repertory grid interview technique, with its grounding in
PCT, allows a researcher to understand a respondent’s individual
perspectives and to find commonalities with the personal
constructs of co-participants in the same event [20]. It is a suitable
tool for an action research project that recognizes learners and
teachers as participants [48]. The output of interviews that
embody students’ experiences in their own voice has ecological
validity [16], while the systematic collection of complementary
quantitative and qualitative data provides internal validity [18].
The technique reduces researcher interference or bias as compared
to more traditional interviewing techniques [1].

Repertory grids have been used extensively in education, market
research, politics, and organizational and business applications. In
the field of education, the analysis of grid data can act as an
illuminative approach for evaluating teaching and to investigate
learning outcomes [28]. The interview technique can help to raise
the focal awareness of the participants and enable them to voice
their tacit thoughts [40]. Investigations into the influence of open-
ended technology projects on students' thinking [42] and changes
in students’ understandings of design in information technology
[41] have revealed that implications for teaching can be drawn
from the data generated by repertory grids. New findings on
implicit learning and knowledge have led to the application of the
technique in areas such as artificial intelligence research on
knowledge acquisition for expert systems [21], as data gathering
methodology in information systems [44], as a means of
improving performance in IT teams [6], and for evaluating the
usability of mobile technologies [14]. However, the study reported
in this paper is the first instance of the use of the repertory grid
technique in CER aimed at exploring the experiences of novice
programmers.

3. Experiences of Novice Programmers
Learning programming is a perennial problem [8] that continues
to be the focus for studies in CER. It is a well-acknowledged fact
that introductory programming courses have high failure and
drop-out rates [3, 29]. Several studies highlight that students lack
the knowledge and skills for problem solving [30, 32]. Novice
programmers, in particular, struggle with basic program design
due to lack of specific knowledge and strategies [10, 36]. Not
surprisingly, computing education researchers are interested in
research into students’ experiences of learning programming.

A review of the literature shows that phenomenography has been
used as a research method in studies that explored students’
experiences of programming. Booth [5] found that the experience
of programming was fundamental to students generating,
expanding, and refining programming conceptions. Bruce et al.
[7] studied the ways that students go about learning to program
and identified five different ways in which learning approaches,
activities, and motivations influenced the ways of seeing
programming, programs, and the programming language.
However, none of these phenomenographic studies focused on the
specific use of resources or programming activities to obtain
feedback about the course design. On the other hand, Eckerdal
[13] used content analysis of interviews to investigate how
different resources were used by students to learn programming
and how the students had experienced that the different resources

supported them in their learning. Eckerdal concluded that
depending on the student’s approach, the resources provided
superficial or meaningful support for learning. Eckerdal
recommended that resources and learning activities that involve
use and understanding in a complex way facilitate deeper learning
approaches to programming.

Most evaluations of innovative course designs in computing [23,
39, 45] rely on surveys to obtain feedback about the course
components. A study that combined ethnographic and cognitive
methods to understand students’ programming experiences within
a course context [35] was confined to the use of in-class lecture
and online newsgroup. There is no existing study that has used the
repertory grid technique to elicit the personal constructs of novice
programmers as a means of understanding the course experience
or as a means of evaluating the course design.

It is argued that knowledge of how students experience
programming is vital for drawing conclusions about the kind of
learning environment and learning experiences that assist students
to achieve desirable learning outcomes. An explicit consideration
of students’ perspectives on the usefulness of learning resources,
activities, and assessments can inform teaching practices in
introductory programming courses. In the action research study
reported in this paper, the repertory grid technique serves to
illuminate the tacit understandings of novice programmers and
acts as an evaluation tool for a course design that was
underpinned by theoretical considerations.

4. RESEARCH CONTEXT
The action research project, discussed in this paper, implemented
and evaluated the outcomes of a redesigned introductory Object-
Oriented Programming (OOP) course for undergraduate students.
The nature of the problems in the introductory programming
course that motivated this action research can be found in [46]. A
theoretical framework (also described in detail in [46]) was
derived from the literature for:

• Constructive alignment of learning outcomes with
assessment tasks (programming related online quizzes,
exams, assignments, projects, and reflective journals);

• Design of learning and teaching activities (pair and team
work, lectures, labs, demonstrations, and peer tutoring) to
encourage students to use deep learning approaches to
achieve the learning outcomes;

• Creation of a learning environment that enabled students to
experience a variety of educationally critical ways [31] of
learning to program through active and collaborative
learning;

• Creation of a learning context with multiple media (IDE,
visualization software, UML editor, graphical library classes,
web-based learning objects, videos, games, and multimedia
tutorials) to enhance the learning experiences.

The course was implemented in two semesters (2008 to 2009)
corresponding to two cycles of the action research project. The
course design was revised in the light of the initial feedback
obtained from the students, and was further fine-tuned after the
second evaluation. During the course implementation,
questionnaires, students’ journals, work assessments, and
observations served as formative feedback [15] of the course
design. A mixed methods two-phase sequential explanatory
design [9] was used for the summative evaluation of the outcomes
of the action research project. In each cycle, the learning

24

approaches of the students were ascertained
questionnaire [4] to determine to what extent the learning context
influenced the learning approaches of the students
how the learning environment influenced the learning experie
of the novice programmers, students with maximum variation
scores for deep and surface learning approaches were identified
for interviews with the repertory grid. The specific research
question that was addressed was: How does the learning

environment influence the learning experiences of the students?

In cycle 1, the course enrollment included one group of
students from Information Systems, Business Technology
Management, Design, and Pre University. All 26 students gave
their consent for the research. The students were non
English speakers of mixed nationalities (Chinese, Portuguese,
Brazilian, and Nigerian). In cycle 2, there were
total of 82 students from Business Administration
Information Systems. As in the previous cycle, the students were
of mixed nationalities (Chinese, Portuguese, Russian, Australian,
Brazilian, and Nigerian). Seventy-two of these students gave their
consent for the research. A sample size of 15 to 25 participants for
an interview with a repertory grid is considered sufficient to
generate enough constructs to approximate the universe defined
by the intervention [44]. Fourteen students in cycle 1 of the action
research project and 15 students in cycle 2 were interviewed
this study.

5. DATA COLLECTION AND ANALYSIS
This section describes the procedures related to the grid setup and
construct elicitation that were undertaken in this study.
analysis combined quantitative and qualitative
measures. The construct categorization and intercoder reliability
procedures are given in detail to establish the rigor of the research
method.

Figure 1. Sample of a completed repertory grid

were ascertained through a
to determine to what extent the learning context

influenced the learning approaches of the students. To investigate
how the learning environment influenced the learning experiences
of the novice programmers, students with maximum variation of

es were identified
for interviews with the repertory grid. The specific research

How does the learning

environment influence the learning experiences of the students?

one group of 12
iness Technology

. All 26 students gave
consent for the research. The students were non-native

onalities (Chinese, Portuguese,
here were 3 groups with a

82 students from Business Administration, Design, and
As in the previous cycle, the students were

of mixed nationalities (Chinese, Portuguese, Russian, Australian,
students gave their

size of 15 to 25 participants for
ew with a repertory grid is considered sufficient to

generate enough constructs to approximate the universe defined
. Fourteen students in cycle 1 of the action

research project and 15 students in cycle 2 were interviewed for

DATA COLLECTION AND ANALYSIS
o the grid setup and

undertaken in this study. The data
qualitative content analysis

construct categorization and intercoder reliability
blish the rigor of the research

5.1 Grid Setup
Figure 1 depicts a sample, of a completed grid from this study,
with the grid components that have been identified. In the figure,
the constructs that were elicited from a particular student (code
ARC1S2, or student number 2, from action research cy
the ratings given by the student for each element on each
construct can be seen. The topic of the grid was
nature of learning situations in the OOP course. The elements that
were supplied were the learning situations in the
course (reflective work, software used, practice quizzes, written
exam, team project, pair programming, peer help, lecturer
feedback, web resources, and lecturer material).

There is a wide disparity of views about the
interviewer supplying/eliciting the elements and constructs
repertory grid [20]. In this study, the
supplied to the participants. The supplied elements provided a
basis for gathering participants’ conceptions of
context, were grounded in theoretical considerations,
comparisons of the responses of resp
student groups. The use of 8 or 10 homogenous, representative,
and unambiguous elements is recommended in a grid
Following these recommendations,
activities familiar to the students in the OOP course
as elements, and the constructs were elicited during the interview
with each student. At the end of the elicitation period,
additional construct (Overall learnt a lot

much) was supplied by the interviewer
ratings on the supplied construct [25]
students’ views about the course and facilitated

Sample of a completed repertory grid from the study.

Ratings

Figure 1 depicts a sample, of a completed grid from this study,
components that have been identified. In the figure,

the constructs that were elicited from a particular student (code
r 2, from action research cycle 1), and

the ratings given by the student for each element on each
construct can be seen. The topic of the grid was Exploring the

in the OOP course. The elements that
were supplied were the learning situations in the programming
course (reflective work, software used, practice quizzes, written
exam, team project, pair programming, peer help, lecturer
feedback, web resources, and lecturer material).

There is a wide disparity of views about the benefit of the
elements and constructs in a

In this study, the elements in the grid were
supplied elements provided a

conceptions of the programming
tical considerations, and enabled

comparisons of the responses of respondents [44] from the 4
homogenous, representative,

and unambiguous elements is recommended in a grid [12].
Following these recommendations, 10 learning and teaching

in the OOP course were supplied
as elements, and the constructs were elicited during the interview
with each student. At the end of the elicitation period, one

Overall learnt a lot - Overall did not learn

by the interviewer to each student to rate. The
 enabled a summary of the

facilitated content analysis.

Constructs

Elements

Student code

& topic

25

5.2 Construct Elicitation
Computer support for construct elicitation in repertory grids
allows the researcher to give feedback and rapid analysis, while
simultaneously attempting to avoid distortion of the elicited
constructs through personal intervention [43]. Given the
popularity of the repertory grid technique, several computer-based
programs are available for grid elicitation and analysis. Of these,
two Windows-based programs, Idiogrid 2.41 and Rep IV2 were
considered. Idiogrid provides many advanced statistical analysis
features, which seemed unnecessary given the interpretative
nature of this study. During the pilot trials, the Rep IV elicitation
script proved intuitive to use and the analysis features were
adequate for predominantly qualitative content analysis.

The built-in elicitation script in Rep IV offers 3 elements at a time
for consideration by the respondent. A rating scale ranging from
two to nine is provided by the software. A 5-point scale was used
for this study, as a 7-point scale in a repertory grid approaches the
limits of a participant’s discriminatory abilities, and anything
above 5 points presents difficulty in visual examination of the grid
[43]. Two pilot trials (conducted with other cohorts) helped to
finalize the following procedures for the interviews in this study:

1. The method for the construct elicitation was read from a
prepared sheet of paper to ensure consistency in the
instructions given to the participants. This would reduce any
bias on the part of the researcher.

2. Interviews were recorded and the elements that were offered
by the triadic grid elicitation script were written in a
notebook so that they could be referred to later to
contextualize the construct. This removed the possibility of
imposing the researcher’s interpretation of the construct
labels.

3. At the end of the interview, the participants were asked if
they had any suggestions for improving the course. Since the
grid data is only indicative, the suggestions would provide
explanation, validation, and triangulation with other data
such as the researcher’s personal observations.

Each interview lasted about an hour during which 9 to 10
constructs per student were entered in the grid. The following
qualifying phrase [26] was used to focus the students’ attention on
the topic during the interview: Which two of these (three elements)

are the same in helping you to learn programming, and different

from the third? The first part of the question yielded the emergent
pole of the construct (defined by the “1” end of the scale), and the
second part yielded the implicit pole of the construct (defined by
the “5” end of the scale). The process of laddering down [12] was
then employed to clarify the meaning of the constructs. These
techniques proved useful, especially with those students who were
non-native English speakers.

Rep IV automatically generates graphic plots of focused cluster
analysis and principal components analysis of the ratings. These
graphs were discussed with the student, and if any student wished
to adjust ratings or the wording of constructs, then the changes
were immediately carried out. The opportunity to talk about or
interpret the patterns added substantially to the researcher’s
understanding of student thinking, thus making the student an
essential part of the evaluation process [47].

1 http://www.idiogrid.com/
2 http://repgrid.com/

5.3 Data Analysis
In the repertory grid technique, each elicited construct constitutes
a basic unit of analysis that expresses a single unit of meaning.
Content analysis of grid constructs can take the form of simple
frequency counts of the number of times the construct occurs, or
where the elements are identical, as in this study, content analysis
can be used to aggregate the meanings of the constructs and
categorize them into themes [43].

Honey’s [25] content analysis technique, which was used in this
study, provides a way to combine statistical analysis of the
numeric ratings of the elements with analytic induction [34] to
aggregate constructs into categories. Such inductive categories
emerge from the data and are not applied a priori. Honey’s [25]
approach to content analysis was based on the assumption that the
ratings on the elicited constructs that match the ratings on the
supplied construct portray the individual’s personal meaning of
the topic. The correlation between the ratings of a construct and
the rating of the supplied construct (Overall learnt a lot - Overall

did not learn much) was measured by computing the sum of
difference and the percentage similarity score using the
procedures outlined in [26]. The similarity scores for the
constructs were labeled with a high, intermediate, or low (H-I-L)
index [25].

The process of inductive content analysis to create categories of
the constructs was carried out in several stages. The criterion of
definition for a category was to identify the learning experience of
the novice programmers. Following this criterion, 112 constructs
(elicited from the repertory grid interviews in the first action
research cycle) were initially analyzed by manual examination of
the constructs. Coding labels that had sufficient resemblance to
the original piece of datum were selected, and in an iterative
process of reflexive scrutiny the constructs were refined to seven
categories and assigned to three meta-categories:

• Learning process (Learning as experiencing; Learning
through reflection);

• Learning content (Learning by coding; Learning through
information; Learning from assessment);

• Learning support (Learning through scaffolding; Learning
from collaboration).

Categories that are developed from a data driven content analysis
of constructs are closer to the raw data, but have low potential for
replicability by others as they involve an individual construing the
constructs of others [22]. There is also the problem of
overgeneralization of the derived categories [17]. Therefore,
coding consistency checks were applied in this study. Two
colleagues, neither of whom had taught programming, were given
the categories with the descriptions. Along with the author, the
three acted as independent coders. To enhance the consistency
check, each coder allocated the full set of 112 constructs to the
categories, rather than using a representative sample.

Intercoder reliability is essential for validating a coding scheme
and reflects the amount of agreement or correspondence among
two or more human coders in assigning exactly the same rating to
each object [33]. For the nominal-level data in this study,
Krippendorff’s Alpha was used to calculate intercoder reliability
coefficients. The index accounts for the level of measurement and
agreement expected by chance and computes reliability estimate
for judgments made at any level of measurement, any number of
coders, with different sample sizes, and with or without missing

26

data [24]. Krippendorff’s Alpha can be calculated by a macro3
that is freely available for SPSS. As a measure of crosschecking,
the reliability figures were recalculated with ReCal34, an online
intercoder reliability calculator that additionally provides results
for average pairwise percent agreement, Fleiss’ Kappa, and
Cohen’s Kappa.

The reliability coefficients, obtained for the first attempt to
allocate the constructs to the categories by all three coders (two
colleagues and the author), were 0.53 for Krippendorff's Alpha
(59.82% for average pairwise percent agreement). A discussion
among the coders revealed that the bipolarity of constructs led to
many disagreements. The nature of the implicit and emergent
poles of constructs was explained to the coders, and a decision
was taken to be guided primarily by the emergent pole (which
shows how two elements are alike). The three coders then
independently carried out a second round of coding, and the
figures for acceptable levels of agreement are reported as 0.81 for
Krippendorff's Alpha (84.52% for average pairwise percent
agreement). Krippendorff’s alpha is known to be conservative
and an index of .70 or higher is considered as acceptable. A
further verbal process of harmonization between pairs of coders
was conducted until full agreement was reached on the construct
categories.

After the constructs were categorized, the mean percentage
similarity score was computed for each category and was used to
estimate the relative importance of that category. The aggregated
set of constructs represents the categorized views of all the
individuals and additionally conveys a summary of individual
meanings [26]. Summary tables were created with the category
headings, and frequencies of constructs from each category.
Personally salient constructs (referring to the H-I-L indices) on
which there was consensus in the group were identified. Honey
[25] compared only the top-and-tail data in his construct analysis
and discarded the intermediate data. However, this study
preserved the information about each individual’s views of the
elements in the programming course. The categorization and
summary procedures were repeated for the 131 constructs elicited
in the second cycle of the action research project.

Kelly [27] defined validity as the capacity of a grid to enable a
person to elaborate constructs, and he equated validity with
usefulness. In this study, explicit measures were taken to combat
threats to validity and trustworthiness through the pilot trials, and
the coding consistency and intercoder reliability checks described
in this section. Finally, to enhance the credibility of the findings,
stakeholder checks were applied through discussions of the
findings with interested students who had participated in the
interviews and with the colleagues who acted as coders.

6. FINDINGS
The personal constructs of the students revealed which elements
of the learning environment were considered helpful for learning
programming. Findings from the repertory grid interviews in the
first cycle, including students’ constructs, have been summarized
and reported earlier [46] and are repeated here to show the
comparison with the findings from the second cycle. Table 1
shows the numeric findings from the repertory grids in the two
cycles of the action research project. In the table, the category
names are followed by the number and percentage of constructs in

3 http://www.afhayes.com/public/kalpha.sps
4 http://dfreelon.org/utils/recalfront/recal3/

that category, the mean percentage score, and the total number of
constructs labeled by the H-I-L index. The categories are ordered
by the percentage similarity scores.

The data shows that in cycle 1, constructs relating to
informational resources have the highest mean similarity score
(53.57%) for all constructs, indicating that these resources were
considered the most important for learning programming. The
constructs on learning as experiencing (52.37%) were ranked
second to learning from informational sources. Learning through
reflection (45.77%) and learning through scaffolding (43.75%)
were considered as more helpful for learning programming than
learning from planning and coding activities (40.71%) and
programming assessments (40.38%). Constructs relating to
collaborative work have the lowest mean similarity score
(33.85%) suggesting that the students had some problems with
group work.

In cycle 2, the constructs relating to learning through reflection
have the highest mean similarity score (56.05%) for all constructs,
whereas in the previous cycle, Learning through information
(53.57%) was considered overall effective. Comparison of the
similarity scores shows the increased importance attached in cycle
2 to scaffolding measures (54.05% vs. 43.75% in cycle 1) and
programming practice (49.09% vs. 40.71% in cycle 1). The
similarity score for constructs relating to collaborative work was
again the lowest (33.64%), indicating recurrent problems with
group work. In cycle 2, learning from assessment (46.11%) was
considered marginally more effective than learning as

experiencing (44.71%).

Major changes were made to the course design after the first
action research cycle, based on the formative and summative
evaluations that were conducted. However, in this paper, only
specific changes made to the course design that are related to
findings from the repertory grid interviews are noted. The
categories that emerged from the constructs are discussed next,
grouped by meta-categories (learning process, learning content,
and learning support). Students’ constructs are indicated in italics.

6.1 Learning Process

6.1.1 Learning through Reflection
Constructs in this category related to students’ reflections on their
personal understanding or knowledge development. Course
elements that encouraged self-reflection included writing journal
entries about the learning plans, goals, and motivations.

In cycle 1, activities that were easy to comprehend, generated
ideas or reflected the skill or ability of the student to program
were considered moderately effective for learning and
understanding. Personal development and learning through effort,
new ideas, and discovery about knowledge were valued as also
learning about weakness and improving. Self-study skills were
perceived to be only for individual benefit and not conducive for
developing leadership and organizational skills. There was some
awareness of learning as problem solving, combining different

thinking, and being able to change your learning. The constructs
reflected the value of writing reflections. As such, journal writing
was retained as an activity for the second cycle, though the
frequency was reduced from weekly submission to three times
during the semester.

27

Table 1. Categories of constructs from two cycles of the action research project

Cycle 1 constructs Cycle 2 constructs

Category names
Number

%

Mean

%

Total

H-I-L
Category names

Number

%
Mean %

Total

H-I-L

Learning through
information

7
6%

53.57 2H, 3I,
2L

Learning through
reflection

19
15%

56.05 7H, 8I,
4L

Learning as
experiencing

19
17%

52.37 8H, 4I,
7L

Learning through
scaffolding

42
32%

54.05 13H, 12I,
17L

Learning through
reflection

26
23%

45.77 5H, 12I,
9L

Learning by coding
11
8%

49.09 8I, 3L

Learning through
scaffolding

20
18%

43.75 6H, 6I,
8L

Learning through
information

4
3%

46.25 1H, 1I,
2L

Learning by coding
14

13%
40.71 4H, 2I,

8L
Learning from

assessment
9

7%
46.11 2H,4I,

3L

Learning from
assessment

13
12%

40.38 2H, 5I,
6L

Learning as
experiencing

35
27%

44.71 4H, 10I,
21L

Learning from
collaboration

13
12%

33.85 1H, 5I,
7L

Learning from
collaboration

11
8%

33.64 2H, 9L

In cycle 2, the course elements were perceived as contributing to
understanding about oneself and understanding the practical and
conceptual aspects of programming. The constructs revealed
perceptions of programming as a way of thinking to solve
problems. The notion of programming as thinking was variously
construed as need to think, logical thinking, thinking about

achievement, and to a lesser extent as about individual thinking

and thinking about experience. Ideas generated during the course
were classified as creative and business. The course was seen as
offering an insight into one’s learning.

6.1.2 Learning as Experiencing
Constructs in this category described the environment in which
learning took place or were related to value judgments of the
course design. Some constructs were affective outcomes
expressing emotions or feelings about the learning activities.

In cycle 1, constructs that related to long term work, more variety,
and active course work revealed the course aspects that the
students found relevant for their learning. There was no consensus
about the usefulness of compulsory or optional activities for study
and practice. Constructs relating to personal opinion, freedom to

research or ask, freedom of choice, and more personality based
activities pointed out study preferences and areas for improvement
of the course design. These needs were explicitly addressed in the
course redesign for the second cycle.

In cycle 2, the course elements were experienced as leading to
individual development and helpful for learning. The course
generated new ideas, but was also more challenging than other
courses. Constructs with moderate ratings referred to the course
elements as complements knowledge, being able to change

knowledge, and encouraging creativity for improvement. The
course was experienced as interesting, easy to follow, with clear

direction for work, and encouraging independent work. Less
salient constructs pointed to the course as being boring and
requiring hard work for compulsory assignments.

6.2 Learning Content

6.2.1 Learning from Assessment
This category summarizes aspects that relate to assessments and
grading. The practice quizzes, pair assignments, written exam, and

the team project included formative and summative assessment.
Evaluation of programming skills and affective values was
undertaken using a holistic grading scheme.

In cycle 1, students were able to differentiate between formative
assessments, that allowed students to practice and receive
comments about their errors, and summative assessments that
simply returned the grade. Assessment activities were generally
perceived as giving the result of knowing, the way to get answers,
and helping one to become aware of errors and progress. There
was indication of the need for help before learning, and more
practice, to show what is missed in learning. In the second cycle,
more practice exercises with solutions were provided.

In cycle 2, students could again differentiate between formative
assignments that enabled one to prepare with answers, and
summative assignments that just showed the result of preparation.
Assessments were seen not only as a way to improve the grade,
but also as a chance for improving one’s work and testing
understanding.

6.2.2 Learning by Coding
This category describes programming related activities that
included designing a program (with use cases, CRC cards, and
UML diagrams), and reading and writing code.

In cycle 1, the students’ constructs were divided on what
constitutes effectiveness for learning programming –knowing how
to write code or knowing how to design a program. Some
constructs focused on the difficulty of writing code as compared
to reading code. Students perceived real-time programming as
being more helpful for learning. Several constructs referred to
working on the big picture or ideas for plan, or steps to plan when
programming. Students were able to differentiate the use of
programs from thinking about programming, and doing

programming from learning about programming. Some
constructs related to the need for more solutions for programming
problems and step-by-step tutorials. In the second cycle, more
emphasis was given to reading code to prepare students to be able
to write code.

In cycle 2, none of the constructs ranked closely with any
individual’s rating on the overall construct. On the other hand,
constructs that moderately matched the overall construct

28

differentiated between using a tool for programming, learning
programming, and thinking about programming rather than how

to do programming. The lowest ranked constructs showed that
students perceived programming more as writing code, than as
planning and design of programs.

6.2.3 Learning through Information
This category relates to learning from resources such as lecture
slides, notes, books, and web pages.

In cycle 1, the resources were perceived as overall most effective
for learning programming. Students differentiated the learning of
theoretical programming concepts from developing affective
values such as communication and organisation skills, and
cooperative work. The code samples and information provided for
the assignments or freely available on the Internet were
considered the most helpful for learning to program. In the second
cycle, the layout of the course web page was further improved and
specific resources were created to tackle programming errors and
misconceptions.

In cycle 2, there were only four constructs in this category, with
two constructs from the same student. This student found the
information sources provided accurate information, unlike the
questionable information given by peers. However, as compared
to the reference material provided, this student preferred
redirection or personal intervention when trying to solve a
problem. The other two students found the resources as useful for

new ideas and to a lesser extent to motivate to learn.

6.3 Learning Support

6.3.1 Learning through Scaffolding
This category relates to learning from feedback and solutions
from peers, student tutor, lecturer, BlueJ IDE, learning objects,
and Jeliot visualizations.

In cycle 1, feedback about programming errors and mistakes was
considered useful for increasing understanding and for improving
the work. There was no clear consensus about the effectiveness of
help before, or after completing an individual assignment. The
need for more individual help, comments after work, more

language help, and classmate help was evident. Students
construed the many forms of help as share knowledge, ask for

help, want to help, and need to help. In the second cycle, more
detailed feedback was provided for assessments, and a student
tutor (who spoke Chinese and English) was appointed to help
students.

In cycle 2, this category had the largest number of constructs (n =
42). Course elements that were helpful for coding errors, for
review, and problem solving were perceived as highly beneficial.
The provision of help by choice and self-help was appreciated.
Specific help in the form of feedback for Java code, program
design, and sample solutions was found moderately useful. The
usefulness of help from the student tutor in Chinese was also
mentioned.

6.3.2 Learning from Collaboration
This category relates to collaboration among students for pair
programming and team projects.

In cycle 1, this category averaged the least score for overall
effectiveness for learning (33.85%). Inexperience with group
work and conflicts within teams were seen as problems. Some

constructs did relate to the benefit of sharing ideas and solving
problems together. The concept of working partnership and the
association of team work and knowledge was also evident. More
attention was paid in the second cycle to developing team
building, negotiation and conflict solving skills amongst students.

In cycle 2, this category again averaged the least score for overall
effectiveness for learning (33.64%). Some course elements were
seen as offering moderate opportunities for discussion and sharing

learning process. There was a marked preference for individual
work and less for the compulsory team and pair work.

6.4 Summary
Table 2 shows the meta-categories with the mean similarity scores
of the categories from both cycles, and the overall scores that
show the relationship with the Overall learnt a lot construct. The
elements supplied in the repertory grids were the learning
situations in the course. The meta-categories refer to the elements
in terms of effectiveness for learning programming. The students’
perceptions revealed that the learning process was considered as
the most beneficial for learning (49.73%) as compared to the
learning content (46.02%) or the learning support (41.33%).

In summary, the personal constructs elicited in cycle 2 showed a
significant shift in the way the students experienced the course.
Learning through informational sources gave way to a focus on
course activities that led to understanding. Students’ perceptions
of thinking as a way of programming were evident. The benefits
of scaffolding were clearly identified in both cycles as playing a
role in improving programming competencies. Formative
assessments continued to be helpful, while collaborative work was
still perceived as problematic. The perceptions of the students
indicated they did not quite like working in teams, even if the
collaborative work resulted in high quality projects. Support for
learning (provided by personal feedback from lecturer and tutor,
through adaptive and interactive software, visualizations, and
multimedia tutorials) was considered as more conducive for
learning than collaborative pair and team work. The investigation
of the personal constructs and the perceptions of effectiveness of
the learning and teaching activities revealed which factors might
be important for the students and should thereby be the focus for
further fine tuning of the course design.

Table 2. Perceived overall effectiveness of course components

Meta

category

Category M % Overall

M %

Learning
process

Learning through
reflection

50.91
49.73

Learning as
experiencing

48.54

Learning
content

Learning through
information

49.91

46.02 Learning by
coding

44.90

Learning from
assessment

43.25

Learning
support

Learning through
scaffolding

48.90

41.33
Learning from
collaboration

33.75

29

7. DISCUSSION
The repertory grid technique was employed for understanding and
to investigate the learning experiences of novice programmers.
The benefits of the technique for data gathering and analysis are
discussed, along with some limitations that arose. The insights
gained from using the technique to evaluate the outcomes of a
redesigned introductory OOP course for undergraduate students
are shared.

In this study, questionnaires, student journals, work assessments,
observations, and repertory grid interviews were employed to
gather data. However, the repertory grid provided richer data than
any of the other data sources or any of the traditional course
evaluation questionnaires used previously by the author. The
repertory grid enabled a holistic view of the programme for course
evaluation and feedback, and it facilitated the reflection-in-action
[38] that is essential for an action research project. It enabled
formative monitoring of the influence of the learning environment
and summative evaluation of the innovation validity [2] crucial
for determining the outcomes of an action research project aimed
at improving programming learning outcomes. The person-
oriented aspect in personal construct theory allowed a deeper
understanding of the experiences of the students, while the
acknowledgment of their different perspectives and the
suggestions offered for course betterment enabled improvements
to the course design.

Three specific benefits [11] of utilizing repertory grids are
applicable to this study:

1. By asking the students to construe the same phenomenon
(the programming course) in terms of effectiveness for their
learning, the repertory grid enabled shared cognitions to be
identified without the drawback of using a priori categories;

2. The interviews with the grids allowed the students (most of
whom were non-native English speakers) to articulate their
experiences, and simultaneously enabled the elicitation of
further details;

3. The qualitative and quantitative data that was obtained was
rich enough to examine each participant’s unique constructs,
while permitting rigorous content analysis and reliability
checks.

The repertory grid technique contributes to the diversity of
computer science research methods that explore the learning
experiences of novice programmers. It is appropriate to discuss
here the relationship between the technique and the
phenomenographic approach to analyzing students’ experiences.
The outcomes in phenomenographic research are shaped both by
the researcher and the object of research [31]. This is the second
order perspective by which the researcher discerns qualitatively
different ways in which a phenomenon is understood. The
individual voices disappear and the categories of outcomes are at
the collective level. In the repertory grid technique there is less
focus on the researcher’s interpretation. The researcher
thematically gathers the constructs together while preserving
information about each individual’s constructs about the
phenomenon in the individual’s own words. The focus of the
study reported in this paper was to learn how students with
different learning approaches underwent the course experience,
and to use this understanding to tailor the course for better
learning outcomes. In the future, it would be a worthwhile
exercise to use the phenomenographic approach to investigate

qualitatively different ways in which students experience a
similarly designed introductory programming course.

Some necessary skills for grid practitioners are the ability to
subsume another’s construing, to suspend personal values, to
listen credulously, and to act with reflexivity [19]. For the author,
the development of these skills was not easy to cultivate and
became a part of the process of maturing as a researcher. In the
role of a researcher, subsuming involved seeing the world through
the students' eyes, and even experiencing some of the feelings
involved, but also maintaining a sense of self as being separate
from the other. The skill of suspending personal values when
eliciting the constructs and the skill of truly listening to a student
was not easy to cultivate. Although discussed in the context of
psychotherapy and counseling, Kelly’s [27] notion of a credulous
attitude also presented some problems. The students lacked
knowledge of the theoretical basis of the course design, which in
turn affected their constructs. However, it was difficult to refrain
from being defensive in the face of what seemed as unwarranted
criticism of the course. Developing the skill of reflexivity also
meant examining and finding out some uncomfortable truths
about one’s own role, actions, idiosyncratic beliefs, and emotions.
This research was truly an exploration of the personal constructs
of the researcher-practitioner.

There are some limitations to the repertory grid technique. The
setup of grids, the construct elicitation, and the data analysis
procedures have considerable costs in terms of time and effort.
Much of the tedium of doing these tasks can be alleviated by
using computer based grid elicitation and analysis software.
However, caution needs to be exercised in not over relying on the
quantitative grid ratings [20]. In this study, which was
predominantly qualitative, precedence was given to the
interpretive aspects of construct summaries. The personal
theories, while providing rich data for course redesign, are not
easily generalizable to other contexts. However, the local
knowledge can be applied by reflective transfer to new practice
situations [37].

This research study used the repertory grid interview technique to
gain insights into how novice programmers experience
programming. The construct categories that emerged from the
grid data analysis related to the learning process (reflection and
experiencing), learning content (information, coding, assessment),
and learning support (scaffolding and collaboration). These
categories pertain to essential elements in a course design that a
teacher needs to attend to influence the learning outcomes. The
results illuminate the value of a holistic approach in focusing on
all aspects of the learning environment. Students’ constructs of
their course experience serve to improve a course developer’s
understanding of the contextual influences on students’ learning.
In this study, the understanding of how the students viewed the
programming activities and experiences provided valuable
insights into how to structure the course for more effective
learning. These insights are listed here, with the belief that
situational understandings can be of universal significance by
opening up possibilities for action in other contexts [15].

Learning process: (Learning through reflection; Learning as

experiencing)

Integrating reflective writing in programming assignments
stimulates students to explore their experiences, to articulate new
understandings, and to develop metacognition.

30

Creating a variety of learning experiences enables students to
become more engaged in programming and leads to enrichment of
learning.

Learning content: (Learning from assessment; Learning by

coding; Learning through information)
Formative programming assignments and projects, that are
interesting, challenging, and model real life, give opportunities to
students to be creative.

Effective learning is supported and a broad perspective of
programming is gained when students actively engage in the
planning process (designing with UML diagrams, use cases, and
CRC cards) followed by the coding, testing, and refactoring
phases.

Educational media (IDEs, visualization software, web resources,
and learning objects) can be leveraged to provide powerful
learning experiences that enable students to investigate, explore,
experiment, and practice programming.

Learning support: (Learning through scaffolding; Learning

from collaboration)

Meaningful and timely feedback from peers, tutors, and software,
in addition to the feedback given by the lecturer can help students
to understand programming errors.

Specific training for team building, conflict resolution,
cooperative learning, and negotiation skills should be given to
improve pair and team programming.

8. CONCLUSIONS
In this study, the repertory grid technique addressed
epistemological concerns about ways of experiencing an
introductory OOP course. It offered the basis for mixing methods
in an action research project. It was underpinned by personal
construct theory and grounded in constructivist and postpositivist
paradigms. It enabled the blending of qualitative and quantitative
methods to elicit personal constructs that embodied novice
programmers’ experiences in their own voice. The data illustrated
the students’ response to the shared course context, which in turn
influenced refinements to the course design. At a personal level,
the reflection on the personal constructs of the students shed new
light on the teaching practice and was an empowering experience
for an educator considering a theoretical framework for an
introductory programming course design.

9. ACKNOWLEDGMENTS
The author wishes to thank the students and colleagues who
participated in the study.

10. REFERENCES
[1] Alexander, P. and Van Loggerenberg, J. 2005. The repertory

grid: "Discovering" a 50-year-old research technique. In
Proceedings of the Annual Research Conference of the South

African Institute of Computer Scientists and Information

Technologists on IT Research in Developing Countries,
(White River, South Africa, September 20 - 22, 2005), 192-
199.

[2] Bain, J.D. 1999. Introduction [Special Issue on Evaluation].
Higher Education Research & Development, 18, 2, 165-172.

[3] Bennedsen, J. and Caspersen, M., E 2007. Failure rates in
introductory programming. ACM SIGCSE Bulletin, 39, 2 32-
36.

[4] Biggs, J.B., Kember, D. and Leung, D. 2001. The revised
two-factor Study Process Questionnaire: R-SPQ-2F. British

Journal of Educational Psychology, 71, 1, 133-149.

[5] Booth, S. 1992. Learning to Program: A Phenomenographic

Perspective. Acta Universitatis Gothoburgensis, Göteborg,
Sweden.

[6] Boyle, T. 2005. Improving team performance using
repertory grids. Team Performance Management, 11, 5/6,
179-187.

[7] Bruce, C., McMahon, C., Buckingham, L., Hynd, J.,
Roggenkamp, M. and Stoodley, I. 2004. Ways of
experiencing the act of learning to program: A
phenomenographic study of introductory programming
students at university. Journal of Information Technology

Education, 3, 143-160.

[8] Carbone, A., Hurst, J., Mitchell, I. and Gunstone, D. 2009.
An exploration of internal factors influencing student
learning of programming. In Proceedings of the 11th

Australasian Computing Education Conferenc, Hamilton, M.
and Clear, T. Eds., ACS, Darlinghurst, Australia, 25-34.

[9] Creswell, J.W. and Plano Clark, V.L. 2007. Designing and

Conducting Mixed Methods Research. Sage, Thousand Oaks,
CA.

[10] De Raadt, M., Watson, R. and Toleman, M. 2009. Teaching
and assessing programming strategies explicitly. In
Proceedings of the 11th Australasian Computing Education

Conference, Hamilton, M. and Clear, T. Eds., ACS,
Darlinghurst, Australia, 55-64.

[11] Dick, P. and Jankowicz, D. 2001. A social constructionist
account of police culture and its influence on the
representation and progression of female officers: A
repertory grid analysis in a UK police force. Policing: An

International Journal of Police Strategies and Management,
24, 2, 181-199.

[12] Easterby-Smith, M., Thorpe, R. and Holman, D. 1996.
Using repertory grids in management. Journal of European

Industrial Training, 20, 3, 3-30.

[13] Eckerdal, A. 2006. Novice students' learning of object-

oriented programming. Licentiate thesis, Uppsala University,
Sweden.

[14] Edwards, H.M., McDonald, S. and Young, S.M. 2010.
Choosing field methods: A reflection on a RepGrid study. In
Proceedings of the Sixth Nordic Conference on Human-

Computer Interaction: Extending Boundaries, (Reykjavik,
Iceland, 2010), ACM, New York, NY, 639-642.

[15] Elliott, J. 2009. Building educational theory through action
research. In Handbook of Educational Action Research,
Noffke, S.E. and Somekh, B. Eds., Sage, London, UK, 28-
38.

[16] Entwistle, N. 2005. Contrasting perspectives on learning. In
The Experience of Learning: Implications for Teaching and

Studying in Higher Education, Marton, F., Hounsell, D. and
Entwistle, N. Eds., University of Edinburgh, Centre for
Teaching, Learning and Assessment, Edinburgh, 3-22.

[17] Ezzy, D. 2002. Qualitative Analysis: Practice and

Innovation. Routledge, London, UK.

[18] Fisher, B., McSweeney, P. and Russell, T. 1991. The
application of repertory grid technique to course evaluation -

31

A pilot project. Assessment & Evaluation in Higher

Education, 16, 2, 109-132.

[19] Fransella, F. 2005. Some skills and tools for personal
construct users. In The Essential Practitioner's Handbook of

Personal Construct Psychology, Fransella, F. Ed. Wiley,
West Sussex, UK, 41-56.

[20] Fransella, F., Bell, R.C. and Bannister, D. 2004. A Manual

for Repertory Grid Technique. Wiley, West Sussex, UK.

[21] Gaines, B.R. and Shaw, M.L.G. 2003. Personal construct

psychology and the cognitive revolution. University of
Calgary-Knowledge Science Institute Web site:
http://pages.cpsc.ucalgary.ca/~gaines/reports/
PSYCH/SIM/SIM.pdf (Accessed May 21, 2010).

[22] Green, B. 2004. Personal construct psychology and content
analysis. Personal Construct Theory & Practice, 1, 3, 82-91.

[23] Guzdial, M. and Forte, A. 2005. Design process for a non-
majors computing course. ACM SIGCSE Bulletin, 37, 1 361-
365.

[24] Hayes, A.F. and Krippendorff, K. 2007. Answering the call
for a standard reliability measure for coding data.
Communication Methods and Measures, 1, 77-89.

[25] Honey, P. 1979. The repertory grid in action: How to use it
to conduct an attitude survey. Industrial and Commercial

Training, 11, 11, 452-459.

[26] Jankowicz, D. 2004. The Easy Guide to Repertory Grids.
Wiley, West Sussex, UK.

[27] Kelly, G.A. 1955. The Psychology of Personal Constructs.
Norton, New York, NY.

[28] Kreber, C., Castleden, H., Erfani, N., Lim, J. and Wright, T.
2003. Exploring the usefulness of Kelly's Personal Construct
Theory in assessing student learning in science courses.
Teaching in Higher Education, 8, 3, 431-445.

[29] Lahtinen, E., Ala-Mutka, K. and Järvinen, H. 2005. A study
of the difficulties of novice programmers. ACM SIGCSE

Bulletin, 37, 3 14-18.

[30] Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer, J.,
Lindholm, M., McCartney, R., Moström, J.E., Sanders, K.,
Seppälä, O., Simon, B. and Thomas, L. 2004. A multi-
national study of reading and tracing skills in novice
programmers. ACM SIGCSE Bulletin, 36, 4 119-150.

[31] Marton, F. and Booth, S. 1997. Learning and Awareness.
Laurence Erlbaum Associates, Mahwah, NJ.

[32] McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y.B., Laxer, C., Thomas, L., Utting, I.
and Wilusz, T. 2001. A multi-national, multi-institutional
study of assessment of programming skills of first-year CS
students. ACM SIGCSE Bulletin, 33, 4 125-140.

[33] Neuendorf, K. 2002. The Content Analysis Guidebook. Sage,
Thousand Oaks, CA.

[34] Patton, M.Q. 1990. Qualitative evaluation and research

methods. Sage, Newbury Park, CA.

[35] Postner, L. and Stevens, R. 2005. What resources do CS1
students use and how do they use them? Computer Science

Education, 15, 3 165-182.

[36] Robins, A., Rountree, J. and Rountree, N. 2003. Learning
and teaching programming: A review and discussion.
Computer Science Education, 13, 2, 137-172.

[37] Schön, D.A. 1995. Knowing-in-action: The new scholarship
requires a new epistemology. Change, 27, 6, 26-34.

[38] Schön, D.A. 1983. The Reflective Practitioner: How

Professionals Think in Action. Basic Books, New York, NY.

[39] Soh, L., Samal, A. and Nugent, G. 2007. An integrated
framework for improved computer science education:
Strategies, implementations, and results. Computer Science

Education, 17, 1, 59-83.

[40] Solas, J. 1992. Investigating teacher and student thinking
about the process of teaching and learning using
autobiography and repertory grid. Review of Educational

Research, 62, 2, 205-225.

[41] Stein, S.J., Docherty, M. and Hannam, R. 2001. Making the
process of design explicit within an information technology
environment. Annual Conference of the AARE, University of
Notre Dame, Fremantle, WA, Australia. http://
www.aare.edu.au/01pap/ste01296.htm (Accessed May 21,
2010).

[42] Stein, S.J., McRobbie, C.J. and Ginns, I. 1998. Insights into
pre-service primary teacher’s thinking about technology and
technology education. Annual Conference of the AARE,
Adelaide, SA, Australia. http://www.aare.edu.au/98pap/
mcr98085.htm (Accessed May 21, 2010).

[43] Stewart, V. and Stewart, A. 1981. Business Applications of

Repertory Grid. McGraw-Hill, Maidenhead, UK.

[44] Tan, F.B. and Hunter, M.G. 2002. The repertory grid
technique: A method for the study of cognition in
information systems. MIS Quarterly, 26, 1, 39-57.

[45] Tew, A.E., Fowler, C. and Guzdial, M. 2005. Tracking an
innovation in introductory CS education from a research
university to a two-year college. In Proceedings of the 36th

SIGCSE Technical Symposium on Computer Science

Education, (St. Louis, Missouri, USA, 2005), ACM, 416-
420.

[46] Thota, N. and Whitfield, R. 2010. Holistic approach to
learning and teaching introductory object-oriented
programming. Computer Science Education, 20, 2 103-127.

[47] Yorke, D.M. 1987. Construing classrooms and curricula: A
framework for research. British Educational Research

Journal, 13, 1, 35-50.

[48] Zuber-Skerritt, O. 1992. Action Research in Higher

Education: Examples and Reflections. Kogan Page, London,
UK.

32

